ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoherence in a fermion environment: Non-Markovianity and Orthogonality Catastrophe

94   0   0.0 ( 0 )
 نشر من قبل Francesco Plastina
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the non-Markovian character of the dynamics of an open two-level atom interacting with a gas of ultra-cold fermions. In particular, we discuss the connection between the phenomena of orthogonality catastrophe and Fermi edge singularity occurring in such a kind of environment and the memory-keeping effects which are displayed in the time evolution of the open system.


قيم البحث

اقرأ أيضاً

We monitor the correlated quench induced dynamical dressing of a spinor impurity repulsively interacting with a Bose-Einstein condensate. Inspecting the temporal evolution of the structure factor three distinct dynamical regions arise upon increasing the interspecies interaction. These regions are found to be related to the segregated nature of the impurity and to the ohmic character of the bath. It is shown that the impurity dynamics can be described by an effective potential that deforms from a harmonic to a double-well one when crossing the miscibility-immiscibility threshold. In particular, for miscible components the polaron formation is imprinted on the spectral response of the system. We further illustrate that for increasing interaction an orthogonality catastrophe occurs and the polaron picture breaks down. Then a dissipative motion of the impurity takes place leading to a transfer of energy to its environment. This process signals the presence of entanglement in the many-body system.
It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.
A remarkable feature of quantum many-body systems is the orthogonality catastrophe which describes their extensively growing sensitivity to local perturbations and plays an important role in condensed matter physics. Here we show that the dynamics of the orthogonality catastrophe can be fully characterized by the quantum speed limit and, more specifically, that any quenched quantum many-body system whose variance in ground state energy scales with the system size exhibits the orthogonality catastrophe. Our rigorous findings are demonstrated by two paradigmatic classes of many-body systems -- the trapped Fermi gas and the long-range interacting Lipkin-Meshkov-Glick spin model.
Quantum non-Markovianity modifies the environmental decoherence of a system. This situation is enriched in complex systems owing to interactions among subsystems. We consider the problem of distinguishing the multiple sources of non-Markovianity usin g a simple power spectrum technique, applied to a qubit interacting with another qubit via a Jaynes-Cummings type Hamiltonian and simultaneously subjected to some well known noise channels, such as, the random telegraph noise and non-Markovian amplitude damping, which exhibit both Markovian as well as non-Markovian dynamics under different parameter ranges.
218 - S. Haseli , G. Karpat , S. Salimi 2014
Exchange of information between a quantum system and its surrounding environment plays a fundamental role in the study of the dynamics of open quantum systems. Here we discuss the role of the information exchange in the non-Markovian behavior of dyna mical quantum processes following the decoherence approach, where we consider a quantum system that is initially correlated with its measurement apparatus, which in turn interacts with the environment. We introduce a new way of looking at the information exchange between the system and environment using the quantum loss, which is shown to be closely related to the measure of non-Markovianity based on the quantum mutual information. We also extend the results of [Phys. Rev. Lett. 112, 210402 (2014)] by Fanchini et al. in several directions, providing a more detailed investigation of the use of the accessible information for quantifying the backflow of information from the environment to the system. Moreover, we reveal a clear conceptual relation between the entanglement and mutual information based measures of non-Markovianity in terms of the quantum loss and accessible information. We compare different ways of studying the information flow in two theoretical examples. We also present experimental results on the investigation of the quantum loss and accessible information for a two-level system undergoing a zero temperature amplitude damping process. We use an optical approach that allows full access to the state of the environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا