ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden entanglement, system-environment information flow and non-Markovianity

130   0   0.0 ( 0 )
 نشر من قبل Antonio D'Arrigo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.


قيم البحث

اقرأ أيضاً

219 - S. Haseli , G. Karpat , S. Salimi 2014
Exchange of information between a quantum system and its surrounding environment plays a fundamental role in the study of the dynamics of open quantum systems. Here we discuss the role of the information exchange in the non-Markovian behavior of dyna mical quantum processes following the decoherence approach, where we consider a quantum system that is initially correlated with its measurement apparatus, which in turn interacts with the environment. We introduce a new way of looking at the information exchange between the system and environment using the quantum loss, which is shown to be closely related to the measure of non-Markovianity based on the quantum mutual information. We also extend the results of [Phys. Rev. Lett. 112, 210402 (2014)] by Fanchini et al. in several directions, providing a more detailed investigation of the use of the accessible information for quantifying the backflow of information from the environment to the system. Moreover, we reveal a clear conceptual relation between the entanglement and mutual information based measures of non-Markovianity in terms of the quantum loss and accessible information. We compare different ways of studying the information flow in two theoretical examples. We also present experimental results on the investigation of the quantum loss and accessible information for a two-level system undergoing a zero temperature amplitude damping process. We use an optical approach that allows full access to the state of the environment.
A Markovian process of a system is defined classically as a process in which the future state of the system is fully determined by only its present state, not by its previous history. There have been several measures of non-Markovianity to quantify t he degrees of non-Markovian effect in a process of an open quantum system based on information backflow from the environment to the system. However, the condition for the witness of the system information backflow does not coincide with the classical definition of a Markovian process. Recently, a new measure with a condition that coincides with the classical definition in the relevant limit has been proposed. Here, we focus on the new definition (measure) for quantum non-Markovian processes, and characterize the Markovian condition as a quantum process that has no information backflow through the reduced environment state (IBTRES) and no system-environment correlation effect (SECE). The action of IBTRES produces non-Markovian effects by flowing the information of quantum operations performed by an experimenter at earlier times back to the system through the environment, while the SECE can produce non-Markovian effect without carrying any earlier quantum operation information. We give the necessary and sufficient conditions for no IBTRES and no SECE, respectively, and show that a process is Markovian if and only if it has no IBTRES and no SECE. The quantitative measures and algorithms for calculating non-Markovianity, IBTRES and soly-SECE are explicitly presented.
We have established a novel method to detect non-Markovian indivisible quantum channels using structural physical approximation. We have shown that this method can be used to detect eternal non -Markovian operations. We have further established that harnessing eternal non-Markovianity, we can device a protocol to detect quantum entanglement.
We show that non-Markovian open quantum systems can exhibit exact Markovian dynamics up to an arbitrarily long time; the non-Markovianity of such systems is thus perfectly hidden, i.e. not experimentally detectable by looking at the reduced dynamics alone. This shows that non-Markovianity is physically undecidable and extremely counterintuitive, since its features can change at any time, without precursors. Some interesting examples are discussed.
In this paper, we study measures of quantum non-Markovianity based on the conditional mutual information. We obtain such measures by considering multiple parts of the total environment such that the conditional mutual information can be defined in th is multipartite setup. The benefit of this approach is that the conditional mutual information is closely related to recovery maps and Markov chains; we also point out its relations with the change of distinguishability. We study along the way the properties of leaked information which is the conditional mutual information that can be back flowed, and we use this leaked information to show that the correlated environment is necessary for nonlocal memory effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا