ﻻ يوجد ملخص باللغة العربية
Although chromospheric activity cycles have been studied in a larger number of late-type stars for quite some time, very little is known about coronal activity-cycles in other stars and their similarities or dissimilarities with the solar activity cycle. While it is usually assumed that cyclic activity is present only in stars of low to moderate activity, we investigate whether the ultra-fast rotator AB Dor, a K dwarf exhibiting signs of substantial magnetic activity in essentially all wavelength bands, exhibits a X-ray activity cycle in analogy to its photospheric activity cycle of about 17 years and possible correlations between these bands. We analysed the combined optical photometric data of AB Dor A, which span ~35 years. Additionally, we used ROSAT and XMM-Newton X-ray observations of AB Dor A to study the long-term evolution of magnetic activity in this active K dwarf over nearly three decades and searched for X-ray activity cycles and related photometric brightness changes. AB Dor A exhibits photometric brightness variations ranging between 6.75 < Vmag < 7.15 while the X-ray luminosities range between 29.8 < log LX [erg/s] < 30.2 in the 0.3-2.5 keV. As a very active star, AB Dor A shows frequent X-ray flaring, but, in the long XMM-Newton observations a kind of basal state is attained very often. This basal state probably varies with the photospheric activity-cycle of AB Dor A which has a period of ~17 years, but, the X-ray variability amounts at most to a factor of ~2, which is, much lower than the typical cycle amplitudes found on the Sun.
X-ray spectra of the late-type star AB Dor, obtained with the XMM-Newton satellite are analysed. AB Dor was particularly active during the observations. An emission measure reconstruction technique is employed to analyse flare and quiescent spectra,
We present the preliminary results of a frequency and line-profile analysis of the CoRoT gamma Dor candidate HD171834. The data consist of 149 days of CoRoT light curves and a ground-based dataset of more than 1400 high-resolution spectra, obtained w
This article provides a review of X-ray variability from late-type stars with particular focus on the achievements of XMM-Newton and its potential for future studies in this field.
Understanding how the magnetic activity of low-mass stars depends on their fundamental parameters is an important goal of stellar astrophysics. Previous studies show that activity levels are largely determined by the stellar Rossby number which is de
Context: The fast rotator, pre-main sequence star AB Dor A is a strong and persistent radio emitter. The extraordinary coronal flaring activity is thought to be the origin of compact radio emission and other associated phenomena as large slingshot pr