ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric variability as a proxy for magnetic activity and its dependence on metallicity

105   0   0.0 ( 0 )
 نشر من قبل Victor See
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding how the magnetic activity of low-mass stars depends on their fundamental parameters is an important goal of stellar astrophysics. Previous studies show that activity levels are largely determined by the stellar Rossby number which is defined as the rotation period divided by the convective turnover time. However, we currently have little information on the role that chemical composition plays. In this work, we investigate how metallicity affects magnetic activity using photometric variability as an activity proxy. Similarly to other proxies, we demonstrate that the amplitude of photometric variability is well parameterised by the Rossby number, although in a more complex way. We also show that variability amplitude and metallicity are generally positively correlated. This trend can be understood in terms of the effect that metallicity has on stellar structure and, hence, the convective turnover time (or, equivalently, the Rossby number). Lastly, we demonstrate that the metallicity dependence of photometric variability results in a rotation period detection bias whereby the periods of metal-rich stars are more easily recovered for stars of a given mass.



قيم البحث

اقرأ أيضاً

134 - Aleks Scholz 2011
FU Tau A is a young very low mass object in the Taurus star forming region which was previously found to have strong X-ray emission and to be anomalously bright for its spectral type. In this study we discuss these characteristics using new informati on from quasi-simultaneous photometric and spectroscopic monitoring. From photometric time series obtained with the 2.2m telescope on Calar Alto we measure a period of ~4d for FU Tau A, most likely the rotation period. The short-term variations over a few days are consistent with the rotational modulation of the flux by cool, magnetically induced spots. In contrast, the photometric variability on timescales of weeks and years can only be explained by the presence of hot spots, presumably caused by accretion. The hot spot properties are thus variable on timescales exceeding the rotation period, maybe due to long-term changes in the accretion rate or geometry. The new constraints from the analysis of the variability confirm that FU Tau A is affected by magnetically induced spots and excess luminosity from accretion. However, accretion is not sufficient to explain its anomalous position in the HR diagram. In addition, suppressed convection due to magnetic activity and/or an early evolutionary stage need to be invoked to fully account for the observed properties. These factors cause considerable problems in estimating the mass of FU Tau A and other objects in this mass/age regime, to the extent that it appears questionable if it is feasible to derive the Initial Mass Function for young low-mass stars and brown dwarfs.
Observations of Sun-like stars over the last half-century have improved our understanding of how magnetic dynamos, like that responsible for the 11-year solar cycle, change with rotation, mass and age. Here we show for the first time how metallicity can affect a stellar dynamo. Using the most complete set of observations of a stellar cycle ever obtained for a Sun-like star, we show how the solar analog HD 173701 exhibits solar-like differential rotation and a 7.4-year activity cycle. While the duration of the cycle is comparable to that generated by the solar dynamo, the amplitude of the brightness variability is substantially stronger. The only significant difference between HD 173701 and the Sun is its metallicity, which is twice the solar value. Therefore, this provides a unique opportunity to study the effect of the higher metallicity on the dynamo acting in this star and to obtain a comprehensive understanding of the physical mechanisms responsible for the observed photometric variability. The observations can be explained by the higher metallicity of the star, which is predicted to foster a deeper outer convection zone and a higher facular contrast, resulting in stronger variability.
141 - S.-W. Chang , Y.-I. Byun , 2015
Based on one-month long MMT time-series observations of the open cluster M37, we monitored light variations of nearly 2500 red dwarfs and successfully identified 420 flare events from 312 cluster M dwarf stars. For each flare light curve, we derived observational and physical parameters, such as flare shape, peak amplitude, duration, energy, and peak luminosity. We show that cool stars produce serendipitous flares energetic enough to be observed in the $r$-band, and their temporal and peak characteristics are almost the same as those in traditional $U$-band observations. We also found many large-amplitude flares with inferred $Delta u > 6$ mag in the cluster sample which had been rarely reported in previous ground-based observations. Following the ergodic hypothesis, we investigate in detail statistical properties of flare parameters over a range of energy ($E_{r}$ $simeq$ $10^{31}-10^{34}$ erg). As expected, there are no statistical differences in the distributions of flare timescales, energies, and frequencies among stars of the same age and mass group. We note that our sample tend to have longer rise and decay timescales compared to those seen in field flare stars of the same spectral type and be more energetic. Flare frequency distributions follow power-law distributions with slopes $beta sim0.62-1.21$ for all flare stars and $beta sim0.52-0.97$ for stars with membership information ($P_{mem} geq 0.2$). These are in general agreement with previous works on flare statistics of young open clusters and nearby field stars. Our results give further support to the classical age-activity relations.
73 - Lei Dong , Xiaohui Yuan , Meng Li 2020
Measuring the geographical distribution of economic activity plays a key role in scientific research and policymaking. However, previous studies and data on economic activity either have a coarse spatial resolution or cover a limited time span, and t he high-resolution characteristics of socioeconomic dynamics are largely unknown. Here, we construct a dataset on the economic activity of mainland China, the gridded establishment dataset (GED), which measures the volume of establishments at a 0.01$^{circ}$ latitude by 0.01$^{circ}$ longitude scale. Specifically, our dataset captures the geographically based opening and closing of approximately 25.5 million firms that registered in mainland China over the period 2005-2015. The characteristics of fine granularity and long-term observability give the GED a high application value. The dataset not only allows us to quantify the spatiotemporal patterns of the establishments, urban vibrancy and socioeconomic activity, but also helps us uncover the fundamental principles underlying the dynamics of industrial and economic development.
Based on a carefully constructed sample of dwarf stars, a new optical-near infrared photometric calibration to estimate the metallicity of late-type K and early-to-mid-type M dwarfs is presented. The calibration sample has two parts; the first part i ncludes 18 M dwarfs with metallicities determined by high-resolution spectroscopy and the second part contains 49 dwarfs with metallicities obtained through moderate-resolution spectra. By applying this calibration to a large sample of around 1.3 million M dwarfs from the Sloan Digital Sky Survey and the Two-Micron All Sky Survey, the metallicity distribution of this sample is determined and compared with those of previous studies. Using photometric parallaxes, the Galactic heights of M dwarfs in the large sample are also estimated. Our results show that stars farther from the Galactic plane, on average, have lower metallicity, which can be attributed to the age-metallicity relation. A scarcity of metal-poor dwarf stars in the metallicity distribution relative to the Simple Closed Box Model indicates the existence of the M dwarf problem, similar to the previously known G and K dwarf problems. Several more complicated Galactic chemical evolution models which have been proposed to resolve the G and K dwarf problems are tested and it is shown that these models could, to some extent, mitigate the M dwarf problem as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا