ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear PT-symmetric models bearing exact solutions

171   0   0.0 ( 0 )
 نشر من قبل Haitao Xu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the nonlinear Schr$ddot{o}$dinger equation with a PT-symmetric potential. Using a hydrodynamic formulation and connecting the phase gradient to the field amplitude, allows for a reduction of the model to a Duffing or a generalized Duffing equation. This way, we can obtain exact soliton solutions existing in the presence of suitable PT-symmetric potentials, and study their stability and dynamics. We report interesting new features, including oscillatory instabilities of solitons and (nonlinear) PT-symmetry breaking transitions, for focusing and defocusing nonlinearities.



قيم البحث

اقرأ أيضاً

We explore the consequences of incorporating parity and time reversal ($mathcal{PT}$) symmetries on the dynamics of nonreciprocal light propagation exhibited by a class of nonuniform periodic structures known as chirped $mathcal{PT}$-symmetric fiber Bragg gratings (FBGs). The interplay among various grating parameters such as chirping, detuning, nonlinearities, and gain/loss gives rise to unique bi- and multi-stable states in the unbroken as well as broken $mathcal{PT}$-symmetric regimes. The role of chirping on the steering dynamics of the hysteresis curve is influenced by the type of nonlinearities and the nature of detuning parameter. Also, incident directions of the input light robustly impact the steering dynamics of bistable and multistable states both in the unbroken and broken $mathcal{PT}$-symmetric regimes. When the light launching direction is reversed, critical stable states are found to occur at very low intensities which opens up a new avenue for an additional way of controlling light with light. We also analyze the phenomenon of unidirectional wave transport and the reflective bi- and multi-stable characteristics at the so-called $mathcal{PT}$-symmetry breaking point.
By rearrangements of waveguide arrays with gain and losses one can simulate transformations among parity-time (PT-) symmetric systems not affecting their pure real linear spectra. Subject to such transformations, however, the nonlinear properties of the systems undergo significant changes. On an example of an array of four waveguides described by the discrete nonlinear Schrodinger equation with dissipation and gain, we show that the equivalence of the underlying linear spectra implies similarity of neither structure nor stability of the nonlinear modes in the arrays. Even the existence of one-parametric families of nonlinear modes is not guaranteed by the PT symmetry of a newly obtained system. Neither the stability is directly related to the PT symmetry: stable nonlinear modes exist even when the spectrum of the linear array is not purely real. We use graph representation of PT-symmetric networks allowing for simple illustration of linearly equivalent networks and indicating on their possible experimental design.
The subject of PT-symmetry and its areas of application have been blossoming over the past decade. Here, we consider a nonlinear Schrodinger model with a complex potential that can be tuned controllably away from being PT-symmetric, as it might be th e case in realistic applications. We utilize two parameters: the first one breaks PT-symmetry but retains a proportionality between the imaginary and the derivative of the real part of the potential; the second one, detunes from this latter proportionality. It is shown that the departure of the potential from the PT -symmetric form does not allow for the numerical identification of exact stationary solutions. Nevertheless, it is of crucial importance to consider the dynamical evolution of initial beam profiles. In that light, we define a suitable notion of optimization and find that even for non PT-symmetric cases, the beam dynamics, both in 1D and 2D -although prone to weak growth or decay- suggests that the optimized profiles do not change significantly under propagation for specific parameter regimes.
We construct exact localised solutions of the PT-symmetric Gross-Pitaevskii equation with an attractive cubic nonlinearity. The trapping potential has the form of two $delta$-function wells, where one well loses particles while the other one is fed w ith atoms at an equal rate. The parameters of the constructed solutions are expressible in terms of the roots of a system of two transcendental algebraic equations. We also furnish a simple analytical treatment of the linear Schrodinger equation with the PT-symmetric double-$delta$ potential.
We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT -symmetric lattices. For each configuration, we develop a dynamical model and examine its PT symmet ry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain-loss coefficient. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions is unstable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا