ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear PT-symmetric plaquettes

162   0   0.0 ( 0 )
 نشر من قبل Kai Li
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT -symmetric lattices. For each configuration, we develop a dynamical model and examine its PT symmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain-loss coefficient. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions is unstable.



قيم البحث

اقرأ أيضاً

The quantum mechanical brachistochrone system with PT-symmetric Hamiltonian is Naimark dilated and reinterpreted as subsystem of a Hermitian system in a higher-dimensional Hilbert space. This opens a way to a direct experimental implementation of the recently hypothesized PT-symmetric ultra-fast brachistochrone regime of [C. M. Bender et al, Phys. Rev. Lett. {bf 98}, 040403 (2007)] in an entangled two-spin system.
150 - Zichao Wen , Carl M. Bender 2020
One-dimensional PT-symmetric quantum-mechanical Hamiltonians having continuous spectra are studied. The Hamiltonians considered have the form $H=p^2+V(x)$, where $V(x)$ is odd in $x$, pure imaginary, and vanishes as $|x|toinfty$. Five PT-symmetric po tentials are studied: the Scarf-II potential $V_1(x)=iA_1,{rm sech}(x)tanh(x)$, which decays exponentially for large $|x|$; the rational potentials $V_2(x)=iA_2,x/(1+x^4)$ and $V_3(x)=iA_3,x/(1+|x|^3)$, which decay algebraically for large $|x|$; the step-function potential $V_4(x)=iA_4,{rm sgn}(x)theta(2.5-|x|)$, which has compact support; the regulated Coulomb potential $V_5(x)=iA_5,x/(1+x^2)$, which decays slowly as $|x|toinfty$ and may be viewed as a long-range potential. The real parameters $A_n$ measure the strengths of these potentials. Numerical techniques for solving the time-independent Schrodinger eigenvalue problems associated with these potentials reveal that the spectra of the corresponding Hamiltonians exhibit universal properties. In general, the eigenvalues are partly real and partly complex. The real eigenvalues form the continuous part of the spectrum and the complex eigenvalues form the discrete part of the spectrum. The real eigenvalues range continuously in value from $0$ to $+infty$. The complex eigenvalues occur in discrete complex-conjugate pairs and for $V_n(x)$ ($1leq nleq4$) the number of these pairs is finite and increases as the value of the strength parameter $A_n$ increases. However, for $V_5(x)$ there is an {it infinite} sequence of discrete eigenvalues with a limit point at the origin. This sequence is complex, but it is similar to the Balmer series for the hydrogen atom because it has inverse-square convergence.
We carry out an exact quantization of a PT symmetric (reversible) Li{e}nard type one dimensional nonlinear oscillator both semiclassically and quantum mechanically. The associated time independent classical Hamiltonian is of non-standard type and is invariant under a combined coordinate reflection and time reversal transformation. We use von Roos symmetric ordering procedure to write down the appropriate quantum Hamiltonian. While the quantum problem cannot be tackled in coordinate space, we show how the problem can be successfully solved in momentum space by solving the underlying Schr{o}dinger equation therein. We obtain explicitly the eigenvalues and eigenfunctions (in momentum space) and deduce the remarkable result that the spectrum agrees exactly with that of the linear harmonic oscillator, which is also confirmed by a semiclassical modified Bohr-Sommerfeld quantization rule, while the eigenfunctions are completely different.
This paper is an addendum to earlier papers cite{R1,R2} in which it was shown that the unstable separatrix solutions for Painleve I and II are determined by $PT$-symmetric Hamiltonians. In this paper unstable separatrix solutions of the fourth Painle ve transcendent are studied numerically and analytically. For a fixed initial value, say $y(0)=1$, a discrete set of initial slopes $y(0)=b_n$ give rise to separatrix solutions. Similarly, for a fixed initial slope, say $y(0)=0$, a discrete set of initial values $y(0)=c_n$ give rise to separatrix solutions. For Painleve IV the large-$n$ asymptotic behavior of $b_n$ is $b_nsim B_{rm IV}n^{3/4}$ and that of $c_n$ is $c_nsim C_{rm IV} n^{1/2}$. The constants $B_{rm IV}$ and $C_{rm IV}$ are determined both numerically and analytically. The analytical values of these constants are found by reducing the nonlinear Painleve IV equation to the linear eigenvalue equation for the sextic $PT$-symmetric Hamiltonian $H=frac{1}{2} p^2+frac{1}{8} x^6$.
The PT-symmetric (PTS) quantum brachistochrone problem is reanalyzed as quantum system consisting of a non-Hermitian PTS component and a purely Hermitian component simultaneously. Interpreting this specific setup as subsystem of a larger Hermitian sy stem, we find non-unitary operator equivalence classes (conjugacy classes) as natural ingredient which contain at least one Dirac-Hermitian representative. With the help of a geometric analysis the compatibility of the vanishing passage time solution of a PTS brachistochrone with the Anandan-Aharonov lower bound for passage times of Hermitian brachistochrones is demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا