ترغب بنشر مسار تعليمي؟ اضغط هنا

Feasibility of electron cyclotron autoresonance acceleration by a short terahertz pulse

69   0   0.0 ( 0 )
 نشر من قبل Jianxing Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A vacuum autoresonance accelerator scheme for electrons, which employs terahertz radiation and currently available magnetic fields, is suggested. Based on numerical simulations, parameter values, which could make the scheme experimentally feasible, are identified and discussed.

قيم البحث

اقرأ أيضاً

Femtosecond electron bunches with keV energies and eV energy spread are needed by condensed matter physicists to resolve state transitions in carbon nanotubes, molecular structures, organic salts, and charge density wave materials. These semirelativi stic electron sources are not only of interest for ultrafast electron diffraction, but also for electron energy-loss spectroscopy and as a seed for x-ray FELs. Thus far, the output energy spread (hence pulse duration) of ultrafast electron guns has been limited by the achievable electric field at the surface of the emitter, which is 10 MV/m for DC guns and 200 MV/m for RF guns. A single-cycle THz electron gun provides a unique opportunity to not only achieve GV/m surface electric fields but also with relatively low THz pulse energies, since a single-cycle transform-limited waveform is the most efficient way to achieve intense electric fields. Here, electron bunches of 50 fC from a flat copper photocathode are accelerated from rest to tens of eV by a microjoule THz pulse with peak electric field of 72 MV/m at 1 kHz repetition rate. We show that scaling to the readily-available GV/m THz field regime would translate to monoenergetic electron beams of ~100 keV.
Autoresonance laser acceleration of electrons is theoretically investigated using circularly polarized focused Gaussian pulses. Many-particle simulations demonstrate feasibility of creating over 10-GeV electron bunches of ultra-high quality (relative energy spread of order 10^-4), suitable for fundamental high-energy particle physics research. The laser peak intensities and axial magnetic field strengths required are up to about 10^18 W/cm^2 (peak power ~10 PW) and 60 T, respectively. Gains exceeding 100 GeV are shown to be possible when weakly focused pulses from a 200-PW laser facility are used.
Dynamics of self-injected electron bunches has been numerically simulated in blowout regime at self-consistent change of electron bunch acceleration by plasma wakefield, excited by a laser pulse, to additional their acceleration by wakefield, excited by self-injected bunch. Advantages of acceleration by pulse train and bunch self-cleaning have been considered.
102 - Qi-Cheng Ning , Ulf Saalmann , 2018
We demonstrate that ultrashort pulses carry the possibility for a new regime of light-matter interaction with nonadiabatic electron processes sensitive to the envelope-derivative of the light pulse. A standard single pulse with its two peaks in the d erivative separated by the width of the pulse acts in this regime like a traditional double pulse. The two ensuing nonadiabatic ionization bursts have slightly different ionization amplitudes. This difference is due to redistribution of continuum electron energy during the bursts, negligible in standard photo-ionization. A time-dependent close- coupling approach based on cycle-averaged potentials in the Kramers-Henneberger reference frame permits a detailed understanding of light pulse derivative-driven electron dynamics.
We study the influence of the polarization states of femtosecond two-color pulses ionizing gases on the emitted terahertz radiation. A local-current model and plane-wave evaluations justify the previously-reported impact on the THz energy yield and a n (almost) linearly-polarized THz field when using circularly-polarized laser harmonics. For such pump pulses, the THz yield is independent on the relative phase between the two colors. When the pump pulses have same helicity, the increase in the THz yield is associated to longer ionization sequences and higher electron transverse momenta acquired in the driving field. Reversely, for two color pulses with opposite helicity, the dramatic loss of THz power comes from destructive interferences driven by the highly symmetric response of the photocurrents lined up on the third harmonic of the fundamental pulse. While our experiments confirm an increased THz yield for circularly polarized pumps of same helicity, surprisingly, the emitted THz radiation is not linearly-polarized. This effect is explained by means of comprehensive 3D numerical simulations highlighting the role of the spatial alignment and non-collinear propagation of the two colors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا