ترغب بنشر مسار تعليمي؟ اضغط هنا

Inflationary equilibrium configurations of scalar-tensor theories of gravity

83   0   0.0 ( 0 )
 نشر من قبل Israel Quiros
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate the asymptotic dynamics of inflationary cosmological models that are based in scalar-tensor theories of gravity. Our main aim is to explore the global structure of the phase space in the framework of single-field inflation models. For this purpose we make emphasis in the adequate choice of the variables of the phase space. Our results indicate that, although single-field inflation is generic in the sense that the corresponding critical point in the phase space exists for a wide class of potentials, along given phase space orbits -- representing potential cosmic histories -- the occurrence of the inflationary stage is rather dependent on the initial conditions. We have been able to give quantitative estimates of the relative probability (RP) for initial conditions leading to slow-roll inflation. For the non-minimal coupling model with the $phi^2$-potential our rough estimates yield to an almost vanishing relative probability: $10^{-13},%lesssim RPll 10^{-8},%$. These bonds are greatly improved in the scalar-tensor models, including the Brans-Dicke theory, where the relative probability $1,%lesssim RPleq 100,%$. Hence slow-roll inflation is indeed a natural stage of the cosmic expansion in Brans-Dicke models of inflation. It is confirmed as well that the dynamics of vacuum Brans-Dicke theories with arbitrary potentials are non-chaotic.



قيم البحث

اقرأ أيضاً

By means of the Greens function method, we computed the spectral indices up to third order in the slow-roll approximation for a general scalar-tensor theory in both the Einstein and Jordan frames. Using quantities which are invariant under the confor mal rescaling of the metric and transform as scalar functions under the reparametrization of the scalar field, we showed that the frames are equivalent up to this order due to the underlying assumptions. Nevertheless, care must be taken when defining the number of $e$-folds.
We analyze the propagation of high-frequency gravitational waves (GW) in scalar-tensor theories of gravity, with the aim of examining properties of cosmological distances as inferred from GW measurements. By using symmetry principles, we first determ ine the most general structure of the GW linearized equations and of the GW energy momentum tensor, assuming that GW move with the speed of light. Modified gravity effects are encoded in a small number of parameters, and we study the conditions for ensuring graviton number conservation in our covariant set-up. We then apply our general findings to the case of GW propagating through a perturbed cosmological space-time, deriving the expressions for the GW luminosity distance $d_L^{({rm GW})}$ and the GW angular distance $d_A^{({rm GW})}$. We prove for the first time the validity of Etherington reciprocity law $d_L^{({rm GW})},=,(1+z)^2,d_A^{({rm GW})}$ for a perturbed universe within a scalar-tensor framework. We find that besides the GW luminosity distance, also the GW angular distance can be modified with respect to General Relativity. We discuss implications of this result for gravitational lensing, focussing on time-delays of lensed GW and lensed photons emitted simultaneously during a multimessenger event. We explicitly show how modified gravity effects compensate between different coefficients in the GW time-delay formula: lensed GW arrive at the same time as their lensed electromagnetic counterparts, in agreement with causality constraints.
With a scalar field non-minimally coupled to curvature, the underlying geometry and variational principle of gravity - metric or Palatini - becomes important and makes a difference, as the field dynamics and observational predictions generally depend on this choice. In the present paper we describe a classification principle which encompasses both metric and Palatini models of inflation, employing the fact that inflationary observables can be neatly expressed in terms of certain quantities which remain invariant under conformal transformations and scalar field redefinitions. This allows us to elucidate the specific conditions when a model yields equivalent phenomenology in the metric and Palatini formalisms, and also to outline a method how to systematically construct different models in both formulations that produce the same observables.
Kinetic mixing between the metric and scalar degrees of freedom is an essential ingredient in contemporary scalar-tensor theories. This often makes hard to understand their physical content, especially when derivative mixing is present, as it is the case for Horndeski action. In this work we develop a method that allows to write a Ricci curvature-free scalar field equation and discuss some of the advantages of such rephrasing in the study of stability issues in the presence of matter, the existence of an Einstein frame and the generalization of the disformal screening mechanism. For quartic Horndeski theories, such procedure leaves, in general, a residual coupling to curvature, given by the Weyl tensor. This gives rise to a binary classification of scalar-tensor theories into stirred theories, for which the curvature can be substituted for, and shaken theories for which a residual coupling to curvature remains. Quite remarkably, we have found that generalized DBI Galileons belong to the first class. Finally, we discuss kinetic mixing in quintic theories for which non-linear mixing terms appears and in the recently proposed theories beyond Horndeski which display a novel form of kinetic mixing, in which the field equation is sourced by derivatives of the energy-momentum tensor.
In the bibliography a certain confusion arises in what regards to the classification of the gravitational theories into scalar-tensor theories and general relativity with a scalar field either minimally or non-minimally coupled to matter. Higher-deri vatives Horndeski and beyond Horndeski theories that at first sight do not look like scalar-tensor theories only add to the confusion. To further complicate things, the discussion on the physical equivalence of the different conformal frames in which a given scalar-tensor theory may be formulated, makes even harder to achieve a correct classification. In this paper we propose a specific criterion for an unambiguous identification of scalar-tensor theories and discuss its impact on the conformal transformations issue. The present discussion carries not only pedagogical but also scientific interest since an incorrect classification of a given theory as a scalar-tensor theory of gravity may lead to conceptual issues and to the consequent misunderstanding of its physical implications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا