ترغب بنشر مسار تعليمي؟ اضغط هنا

A SINFONI Integral Field Spectroscopy Survey for Galaxy Counterparts to Damped Lyman-alpha Systems - V. Neutral and Ionised Phase Metallicities

128   0   0.0 ( 0 )
 نشر من قبل Celine Peroux
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gas-phase and stellar metallicities have proven to be important parameters to constrain the star formation history of galaxies. However, HII regions associated with recent star-formation may not have abundances typical for the galaxy as a whole and it is believed that the bulk of the metals may be contained in the neutral gas. It is therefore important to directly probe the metal abundances in the neutral gas, which can be done by using absorption lines imprinted on a background quasar. Recently, we have presented studies of the stellar content of a small sample of such quasar absorbers with HI column densities measured to be in the sub-Damped Lyman-alpha to Damped Lyman-alpha range. Here, we present observations covering 300 nm to 2.5 microns of emission line spectra of three of these absorbing-galaxies using the long-slit spectrograph X-Shooter on the VLT. This allows us to compare the neutral and ionised phase metallicities in the same objects and relates these measures to possible signature of low-metallicity gas accretion or outflows of gas enriched by star formation. Our results suggest that the abundances derived in absorption along the line-of-sight to background quasars are reliable measures of the overall galaxy metallicities. In addition to a comparison of abundances in different phases of the gas, a potential observational consequence of differences in fueling mechanisms for disc galaxies is the internal distribution of their chemical abundances. We present some evidence for small negative metallicity gradients in the three systems. The flat slopes are in line with the differences observed between the two phases of the gas. These results suggest that a comparison of the HI and HII metallicities is a robust indicator of abundance gradients in high-redshift galaxies and do not favour the presence of infall of fresh gas in these objects.



قيم البحث

اقرأ أيضاً

102 - Celine Peroux 2011
We report three additional SINFONI detections of H-alpha emission line from quasar absorbers, two of which are new identifications. These were targeted among a sample of systems with log N(HI)>19.0 and metallicities measured from high-resolution spec troscopy. The detected galaxies are at impact parameters ranging from 6 to 12 kpc from the quasars line-of-sight. We derive star formation rates (SFR) of a few solar masses per year for the two absorbers at z_abs~1 and SFR=17 solar masses per year for the DLA at z_abs~2. These three detections are found among a sample of 16 DLAs and sub-DLAs (5 at z_abs~1 and 7 at z_abs~2). For the remaining undetected galaxies, we derive flux limits corresponding to SFR<0.1--11.0 solar masses per year depending on redshift of the absorber and depth of the data. When combined with previous results from our survey for galaxy counterparts to HI-selected absorbers, we find a higher probability of detecting systems with higher metallicity as traced by dust-free [Zn/H] metallicity. We also report a higher detection rate with SINFONI for host galaxies at z_abs~1 than for systems at z_abs~2. Using the NII/H-alpha ratio, we can thus compare absorption and emission metallicities in the same high-redshift objects, more than doubling the number of systems for which such measures are possible.
209 - Celine Peroux 2013
The circumgalactic medium (CGM) of typical galaxies is crucial to our understanding of the cycling of gas into, through and out of galaxies. One way to probe the CGM is to study gas around galaxies detected via the absorption lines they produce in th e spectra of background quasars. Here, we present medium resolution and new ~0.4-arcsec resolution (~3 kpc at z~1) 3D observations with VLT/SINFONI of galaxies responsible for high-N(HI) quasar absorbers. These data allow to determine in details the kinematics of the objects: the four z~1 objects are found to be rotation-supported as expected from inclined discs, while the fifth z~2 system is dispersion-dominated. Two of the systems show sign of interactions and merging. In addition, we use several indicators (star formation per unit area, a comparison of emission and absorption kinematics, arguments based on the inclination and the orientation of the absorber to the quasar line-of-sight and the distribution of metals) to determine the direction of the gas flows in and out of these galaxies. In some cases, our observations are consistent with the gas seen in absorption being due to material co-rotating with their halos. In the case of absorbing-galaxies towards Q1009-0026 and Q2222-0946, these indicators point toward the presence of an outflow traced in absorption.
167 - Celine Peroux 2016
The use of background quasars provides a powerful tool to probe the cool gas in the circum-galactic medium of foreground galaxies. Here, we present new observations with SINFONI and X-Shooter of absorbing-galaxy candidates at z=0.7-1. We report the d etection with both instruments of the H-alpha emission line of one sub-DLA at z_abs=0.94187 with log N(HI)=19.38^+0.10_-0.15 towards SDSS J002133.27+004300.9. We estimate the star formation rate: SFR=3.6+/-2.2 solar masses per year in that system. A detailed kinematic study indicates a dynamical mass M_dyn=10^9.9+/-0.4 solar masses and a halo mass M_halo=10^11.9+/-0.5 solar masses. In addition, we report the OII detection with X-Shooter of another DLA at z_abs=0.7402 with log N(HI)=20.4+/-0.1 toward Q0052+0041 and an estimated SFR of 5.3+/-0.7 solar masses per year. Three other objects are detected in the continuum with X-Shooter but the nature and redshift of two of these objects are unconstrained due to the absence of emission lines, while the third object might be at the redshift of the quasar. We use the objects detected in our whole N(HI)-selected SINFONI survey to compute the metallicity difference between the galaxy and the absorbing gas, delta_HI(X), where a positive (negative) value indicates infall (outflow). We compare this quantity with the quasar line of sight alignment with the galaxys major (minor) axis, another tracer of infall (outflow). We find that these quantities do not correlate as expected from simple assumptions. Additional observations are necessary to relate these two independent probes of gas flows around galaxies.
We present a sample of 38 intervening Damped Lyman $alpha$ (DLA) systems identified towards 100 $z>3.5$ quasars, observed during the XQ-100 survey. The XQ-100 DLA sample is combined with major DLA surveys in the literature. The final combined sample consists of 742 DLAs over a redshift range approximately $1.6 < z_{rm abs} < 5.0$. We develop a novel technique for computing $Omega_{rm HI}^{rm DLA}$ as a continuous function of redshift, and we thoroughly assess and quantify the sources of error therein, including fitting errors and incomplete sampling of the high column density end of the column density distribution function. There is a statistically significant redshift evolution in $Omega_{rm HI}^{rm DLA}$ ($geq 3 sigma$) from $z sim 2$ to $z sim$ 5. In order to make a complete assessment of the redshift evolution of $Omega_{rm HI}$, we combine our high redshift DLA sample with absorption surveys at intermediate redshift and 21cm emission line surveys of the local universe. Although $Omega_{rm HI}^{rm DLA}$, and hence its redshift evolution, remains uncertain in the intermediate redshift regime ($0.1 < z_{rm abs} < 1.6$), we find that the combination of high redshift data with 21cm surveys of the local universe all yield a statistically significant evolution in $Omega_{rm HI}$ from $z sim 0$ to $z sim 5$ ($geq 3 sigma$). Despite its statistical significance, the magnitude of the evolution is small: a linear regression fit between $Omega_{rm HI}$ and $z$ yields a typical slope of $sim$0.17$times 10^{-3}$, corresponding to a factor of $sim$ 4 decrease in $Omega_{rm HI}$ between $z=5$ and $z=0$.
Sub-damped Lyman-alpha systems (sub-DLAs) have previously been found to exhibit a steeper metallicity evolution than the classical damped Lyman-alpha systems (DLAs), evolving to close to solar metallicity by z~1. From new high-resolution spectra of 1 7 sub-DLAs we have increased the number of measurements of [Fe/H] at z<1.7 by 25% and compiled the most complete literature sample of sub-DLA and DLA abundances to date. We find that sub-DLAs are indeed significantly more metal-rich than DLAs, but only at z<1.7; the metallicity distributions of sub-DLAs and DLAs at z>1.7 are statistically consistent. We also present the first evidence that sub-DLAs follow a velocity width-metallicity correlation over the same velocity range as DLAs, but the relation is offset to higher metallicities than the DLA relation. On the basis of these results, we revisit the previous explanation that the systematically higher metallicities observed in sub-DLAs are indicative of higher host galaxy masses. We discuss the various problems that this interpretation encounters and conclude that in general sub-DLAs are not uniquely synonymous with massive galaxies. We rule out physically related sources of bias (dust, environment, ionization effects) and examine systematics associated with the selection and analysis of low-redshift sub-DLAs. We propose that the high metallicities of sub-DLAs at z<1.7 that drives an apparently steep evolution may be due to the selection of most low-redshift sub-DLAs based on their high MgII equivalent widths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا