ﻻ يوجد ملخص باللغة العربية
Pulsar nulling is a phenomenon of sudden cessation of pulse emission for a number of periods. The nulling fraction was often used to characterize the phenomenon. We propose a new method to analyse pulsar nulling phenomenon, by involving two key parameters, the nulling degree, $chi$, which is defined as the angle in a rectangular coordinates for the numbers of nulling periods and bursting periods, and the nulling scale, $ N $, which is defined as the effective length of the consecutive nulling periods and bursting periods. The nulling degree $chi$ can be calculated by $tan chi = N_{rm nulling} / N_{rm bursting} $ and the mean is related to the nulling fraction, while the nulling scale, $ N $, is also a newly defined fundamental parameter which indicates how often the nulling occurs. We determined the distributions of $chi$ and $ N $ for 10 pulsars by using the data in literature. We found that the nulling degree $chi$ indicates the relative length of nulling to that of bursting, and the nulling scale $ N $ is found to be related to the derivative of rotation frequency and hence the loss rate of rotational energy of pulsars. Their deviations reflect the randomness of the nulling process.
We present a new method of analysing and quantifying velocity structure in star forming regions suitable for the rapidly increasing quantity and quality of stellar position-velocity data. The method can be applied to data in any number of dimensions,
We develop a new method to measure neutron star parameters and derive constraints on the equation of state of dense matter by fitting the frequencies of simultaneous Quasi Periodic Oscillation modes observed in the X-ray flux of accreting neutron sta
High-Resolution Spectroscopy (HRS) has been used to study the composition and dynamics of exoplanetary atmospheres. In particular, the spectrometer CRIRES installed on the ESO-VLT has been used to record high-resolution spectra in the Near-IR of gase
Most of pulsar nulling observations were conducted at frequencies lower than 1400~MHz. We aim to understand the nulling behaviors of pulsars at relatively high frequency, and to check if nulling is caused by a global change of pulsar magnetosphere. 2
The Pulsar backend of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) has monitored hundreds of known pulsars in the northern sky since Fall 2018, providing a rich data set for the study of temporal variations in pulsar emission. Using a m