ترغب بنشر مسار تعليمي؟ اضغط هنا

A new method to constrain neutron star structure from quasi-periodic oscillations

75   0   0.0 ( 0 )
 نشر من قبل Andrea Maselli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new method to measure neutron star parameters and derive constraints on the equation of state of dense matter by fitting the frequencies of simultaneous Quasi Periodic Oscillation modes observed in the X-ray flux of accreting neutron stars in low mass X-ray binaries. To this aim we calculate the fundamental frequencies of geodesic motion around rotating neutron stars based on an accurate general-relativistic approximation for their external spacetime. Once the fundamental frequencies are related to the observed frequencies through a QPO model, they can be fit to the data to obtain estimates of the three parameters describing the spacetime, namely the neutron star mass, angular momentum and quadrupole moment. From these parameters we derive information on the neutron star structure and equation of state. We present a proof of principle of our method applied to pairs of kHz QPO frequencies observed from three systems (4U1608-52, 4U0614+09 and 4U1728-34). We identify the kHz QPOs with the azimuthal and the periastron precession frequencies of matter orbiting the neutron star, and via our Bayesian inference technique we derive constraints on the neutrons stars masses and radii. This method is applicable to other geodesic-frequency-based QPO models.



قيم البحث

اقرأ أيضاً

When the accretion disc around a weakly magnetised neutron star (NS) meets the stellar surface, it should brake down to match the rotation of the NS, forming a boundary layer. As the mechanisms potentially responsible for this braking are apparently inefficient, it is reasonable to consider this layer as a spreading layer (SL) with negligible radial extent and structure. We perform hydrodynamical 2D spectral simulations of an SL, considering the disc as a source of matter and angular momentum. Interaction of new, rapidly rotating matter with the pre-existing, relatively slow material co-rotating with the star leads to instabilities capable of transferring angular momentum and creating variability on dynamical timescales. For small accretion rates, we find that the SL is unstable for heating instability that disrupts the initial latitudinal symmetry and produces large deviations between the two hemispheres. This instability also results in breaking of the axial symmetry as coherent flow structures are formed and escape from the SL intermittently. At enhanced accretion rates, the SL is prone to shearing instability and acts as a source of oblique waves that propagate towards the poles, leading to patterns that again break the axial symmetry. We compute artificial light curves of an SL viewed at different inclination angles. Most of the simulated light curves show oscillations at frequencies close to 1kHz. We interpret these oscillations as inertial modes excited by shear instabilities near the boundary of the SL. Their frequencies, dependence on flux, and amplitude variations can explain the high-frequency pair quasi-periodic oscillations observed in many low-mass X-ray binaries.
We consider twin-peak quasi-periodic oscillations observed in the accreting low-mass neutron star binaries and explore restrictions to central compact object properties that are implied by various QPO models. For each model and each source, the consi deration results in a specific relation between the compact object mass $M$ and the angular-momentum $j$ rather than in their single preferred combination. Moreover, restrictions on the models resulting from observations of the low-frequency sources are weaker than those in the case of the high-frequency sources.
We report the discovery ($20sigma$) of kilohertz quasi-periodic oscillations (kHz QPOs) at ~ 690 Hz from the transient neutron star low-mass X-ray binary EXO 1745-248. We find that this is a lower kHz QPO, and systematically study the time variation of its properties using smaller data segments with and without the shift-and-add technique. The quality (Q) factor occasionally significantly varies within short ranges of frequency and time. A high Q-factor (264.5 +- 38.5) of the QPO is found for a 200 s time segment, which might be the largest value reported in the literature. We argue that an effective way to rule out kHz QPO models is to observationally find such high Q-factors, even for a short duration, as many models cannot explain a high coherence. However, as we demonstrate, the shift-and-add technique cannot find a very high Q-factor which appears for a short period of time. This shows that the coherences of kHz QPOs can be higher than the already high values reported using this technique, implying further constraints on models. We also discuss the energy dependence of fractional rms amplitude and Q-factor of the kHz QPO.
114 - Davide Lazzati 2019
The discovery of GW170817, the merger of a binary neutron star (NS) triggered by a gravitational wave detection by LIGO and Virgo, has opened a new window of exploration in the physics of NSs and their cosmological role. Among the important quantitie s to measure are the mass and velocity of the ejecta produced by the tidally disrupted NSs and the delay - if any - between the merger and the launching of a relativistic jet. These encode information on the equation of state of the NS, the nature of the merger remnant, and the jet launching mechanism, as well as yielding an estimate of the mass available for r-process nucleosynthesis. Here we derive analytic estimates for the structure of jets expanding in environments with different density, velocity, and radial extent. We compute the jet-cocoon structure and the properties of the broadband afterglow emission as a function of the ejecta mass, velocity, and time delay between merger and launch of the jet. We show that modeling of the afterglow light curve can constrain the ejecta properties and, in turn, the physics of neutron density matter. Our results increase the interpretative power of electromagnetic observations by allowing for a direct connection with the merger physics.
As the era of gravitational-wave astronomy has well and truly begun, gravitational radiation from rotating neutron stars remains elusive. Rapidly spinning neutron stars are the main targets for continuous-wave searches since, according to general rel ativity, provided they are asymmetrically deformed, they will emit gravitational waves. It is believed that detecting such radiation will unlock the answer to why no pulsars have been observed to spin close to the break-up frequency. We review existing studies on the maximum mountain that a neutron star crust can support, critique the key assumptions and identify issues relating to boundary conditions that need to be resolved. In light of this discussion, we present a new scheme for modelling neutron star mountains. The crucial ingredient for this scheme is a description of the fiducial force which takes the star away from sphericity. We consider three examples: a source potential which is a solution to Laplaces equation, another solution which does not act in the core of the star and a thermal pressure perturbation. For all the cases, we find that the largest quadrupoles are between a factor of a few to two orders of magnitude below previous estimates of the maximum mountain size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا