ﻻ يوجد ملخص باللغة العربية
We identify a subproblem of the model-checking problem for the epistemic mu-calculus which is decidable. Formulas in the instances of this subproblem allow free variables within the scope of epistemic modalities in a restricted form that avoids embodying any form of common knowledge. Our subproblem subsumes known decidable fragments of epistemic CTL/LTL, may express winning strategies in two-player games with one player having imperfect information and non-observable objectives, and, with a suitable encoding, decidable instances of the model-checking problem for ATLiR.
The notion of knowledge-based program introduced by Halpern and Fagin provides a useful formalism for designing, analysing, and optimising distributed systems. This paper formulates the two phase commit protocol as a knowledge-based program and then
The higher-dimensional modal mu-calculus is an extension of the mu-calculus in which formulas are interpreted in tuples of states of a labeled transition system. Every property that can be expressed in this logic can be checked in polynomial time, an
In this article, we give an overview of our project on higher-order program verification based on HFL (higher-order fixpoint logic) model checking. After a brief introduction to HFL, we explain how it can be applied to program verification, and summarize the current status of the project.
Ong has shown that the modal mu-calculus model checking problem (equivalently, the alternating parity tree automaton (APT) acceptance problem) of possibly-infinite ranked trees generated by order-n recursion schemes is n-EXPTIME complete. We consider
We introduce a new game-theoretic semantics (GTS) for the modal mu-calculus. Our so-called bounded GTS replaces parity games with alternative evaluation games where only finite paths arise; infinite paths are not needed even when the considered trans