ترغب بنشر مسار تعليمي؟ اضغط هنا

Disconnected quark loop contributions to nucleon observables in lattice QCD

148   0   0.0 ( 0 )
 نشر من قبل Constantia Alexandrou
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف A. Abdel-Rehim




اسأل ChatGPT حول البحث

We perform a high statistics calculation of disconnected fermion loops on Graphics Processing Units for a range of nucleon matrix elements extracted using lattice QCD. The isoscalar electromagnetic and axial vector form factors, the sigma-terms and the momentum fraction and helicity are among the quantities we evaluate. We compare the disconnected contributions to the connected ones and give the physical implications on nucleon observables that probe its structure.



قيم البحث

اقرأ أيضاً

218 - M. Engelhardt 2012
Contributions of strange quarks to the mass and spin of the nucleon, characterized by the observables f_Ts and Delta s, respectively, are investigated within lattice QCD. The calculation employs a 2+1-flavor mixed-action lattice scheme, thus treating the strange quark degrees of freedom in dynamical fashion. Numerical results are obtained at three pion masses, m_pi = 495 MeV, 356 MeV, and 293 MeV, renormalized, and chirally extrapolated to the physical pion mass. The value extracted for Delta s at the physical pion mass in the MSbar scheme at a scale of 2 GeV is Delta s = -0.031(17), whereas the strange quark contribution to the nucleon mass amounts to f_Ts =0.046(11). In the employed mixed-action scheme, the nucleon valence quarks as well as the strange quarks entering the nucleon matrix elements which determine f_Ts and Delta s are realized as domain wall fermions, propagators of which are evaluated in MILC 2+1-flavor dynamical asqtad quark ensembles. The use of domain wall fermions leads to mild renormalization behavior which proves especially advantageous in the extraction of f_Ts.
We compute the disconnected quark loops contributions entering the determination of nucleon observables, by using a $N_f = 2$ ensemble of twisted mass fermions with a clover term at a pion mass $m_pi = 133$ MeV. We employ exact deflation and implemen t all calculations in GPUs, enabling us to achieve large statistics and a good signal.
Moments of the quark density, helicity, and transversity distributions are calculated in unquenched lattice QCD. Calculations of proton matrix elements of operators corresponding to these moments through the operator product expansion have been perfo rmed on $16^3 times 32$ lattices for Wilson fermions at $beta = 5.6$ using configurations from the SESAM collaboration and at $beta = 5.5$ using configurations from SCRI. One-loop perturbative renormalization corrections are included. At quark masses accessible in present calculations, there is no statistically significant difference between quenched and full QCD results, indicating that the contributions of quark-antiquark excitations from the Dirac Sea are small. Close agreement between calculations with cooled configurations containing essentially only instantons and the full gluon configurations indicates that quark zero modes associated with instantons play a dominant role. Naive linear extrapolation of the full QCD calculation to the physical pion mass yields results inconsistent with experiment. Extrapolation to the chiral limit including the physics of the pion cloud can resolve this discrepancy and the requirements for a definitive chiral extrapolation are described.
Previous extrapolations of lattice QCD results for the nucleon mass to the physically relevant region of small quark masses, using chiral effective field theory, are extended and expanded in several directions. A detailed error analysis is performed. An approach with explicit delta(1232) degrees of freedom is compared to a calculation with only pion and nucleon degrees of freedom. The role of the delta(1232) for the low-energy constants of the latter theory is elucidated. The consistency with the chiral perturbation theory analysis of pion-nucleon scattering data is examined. It is demonstrated that this consistency can indeed be achieved if the delta(1232) dominance of the P-wave pion-nucleon low-energy constant c3 is accounted for. Introduction of the delta(1232) as an explicit propagating degree of freedom is not crucial in order to describe the quark-mass dependence of the nucleon mass, in contrast to the situation with spin observables of the nucleon. The dependence on finite lattice volume is shown to yield valuable additional constraints. What emerges is a consistent and stable extrapolation scheme for pion masses below 0.6 GeV.
On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly-magic nuclei such as 16^O and 40^Ca are investigated. We found that those nuclei are bo und for the pseudo-scalar meson mass M_PS ~ 470 MeV. The mass number dependence of the binding energies, single-particle spectra and density distributions are qualitatively consistent with those expected from empirical data at the physical point, although these hypothetical nuclei at heavy quark mass have smaller binding energies than the real nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا