ترغب بنشر مسار تعليمي؟ اضغط هنا

Skyrmion magnetic structure of an ordered FePt monolayer deposited on Pt(111)

101   0   0.0 ( 0 )
 نشر من قبل Sergiy Mankovsky
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of the Dzyaloshinsky-Moriya interaction on the magnetic structure of an ordered FePt monolayer deposited on Pt (111) surface has been investigated. In the ground state, the pronounced anisotropic geometry of the FePt layer with alternating Fe and Pt chains gives rise to a helimagnetic structure with a strong difference in the helicity period along the chains and perpendicular to them. In the presence of an external magnetic field, the region of stable Skyrmion magnetic structures in the $B-T$ phase diagram has been demonstrated via Monte Carlo simulations using the parameters obtained within first-principles electronic structure calculations. The present study demonstrates clearly that the ratio of the exchange coupling parameters J/D for a deposited magnetic film - being of central importance for the formation of Skyrmions - can be manipulated by growing an overlayer of 2-dimensional (2D) compounds with the atoms carrying spontaneous magnetic moments separated by the atoms of non-magnetic elements.



قيم البحث

اقرأ أيضاً

Surface-bound porphyrins are promising candidates for molecular switches, electronics and spintronics. Here, we studied the structural and the electronic properties of Fe-tetra-pyridil-porphyrin adsorbed on Au(111) in the monolayer regime. We combine d scanning tunneling microscopy/spectroscopy, ultraviolet photoemission, and two-photon photoemission to determine the energy levels of the frontier molecular orbitals. We also resolved an excitonic state with a binding energy of 420 meV, which allowed us to compare the electronic transport gap with the optical gap.
We realize and investigate ionic liquid gated field-effect transistors (FETs) on large-area MoS2 monolayers grown by chemical vapor deposition (CVD). Under electron accumulation, the performance of these devices is comparable to that of FETs based on exfoliated flakes. FETs on CVD-grown material, however, exhibit clear ambipolar transport, which for MoS2 monolayers had not been reported previously. We exploit this property to estimate the bandgap {Delta} of monolayer MoS2 directly from the device transfer curves and find {Delta} $approx$ 2.4-2.7 eV. In the ambipolar injection regime, we observe electroluminescence due to exciton recombination in MoS2, originating from the region close to the hole-injecting contact. Both the observed transport properties and the behavior of the electroluminescence can be consistently understood as due to the presence of defect states at an energy of 250-300 meV above the top of the valence band, acting as deep traps for holes. Our results are of technological relevance, as they show that devices with useful optoelectronic functionality can be realized on large-area MoS2 monolayers produced by controllable and scalable techniques.
Ultrathin (111)-oriented polar iron oxide films were grown on a Pt(111) single crystal either by the reactive deposition of iron or oxidation of metallic iron monolayers. These films were characterized using low energy electron diffraction, scanning tunneling microscopy and conversion electron Mossbauer spectroscopy. The reactive deposition of Fe led to the island growth of Fe3O4, in which the electronic and magnetic properties of the bulk material were modulated by superparamagnetic size effects for thicknesses below 2 nm, revealing specific surface and interface features. In contrast, the oxide films with FeO stoichiometry, which could be stabilized as thick as 4 nm under special preparation conditions, had electronic and magnetic properties that were very different from their bulk counterpart, wustite. Unusual long range magnetic order appeared at room temperature for thicknesses between three and ten monolayers, the appearance of which requires severe structural modification from the rock-salt structure.
On the basis of a first-principles, relativistic electronic structure theory of finite temperature metallic magnetism, we investigate the variation of magnetic anisotropy, K, with magnetisation, M, in metallic ferromagnets. We apply the theory to the high magnetic anisotropy material, L1_0-ordered FePt, and find its uniaxial K consistent with a magnetic easy axis perpendicular to the Fe/Pt layering for all M and to be proportional to M^2 for a broad range of values of M. For small M, near the Curie temperature, the calculations pick out the easy axis for the onset of magnetic order. Our results are in good agreement with recent experimental measurements on this important magnetic material.
The longitudinal spin Seebeck effect is detected in sputter-deposited NiFe2O4 films using Pt as a spin detector and compared to previously investigated NiFe2O4 films prepared by chemical vapor deposition. Anomalous Nernst effects induced by the magne tic proximity effect in Pt can be excluded for the sputter-deposited NiFe2O4 films down to a certain limit, since x-ray resonant magnetic reflectivity measurements show no magnetic response down to a limit of 0.04 {mu}B per Pt atom comparable to the case of the chemicallydeposited NiFe2O4 films. These differently prepared films have various thicknesses. Therefore, we further studied Pt/Fe reference samples with various Fe thicknesses and could confirm that the magnetic proximity effect is only induced by the interface properties of the magnetic material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا