ﻻ يوجد ملخص باللغة العربية
Ultrathin (111)-oriented polar iron oxide films were grown on a Pt(111) single crystal either by the reactive deposition of iron or oxidation of metallic iron monolayers. These films were characterized using low energy electron diffraction, scanning tunneling microscopy and conversion electron Mossbauer spectroscopy. The reactive deposition of Fe led to the island growth of Fe3O4, in which the electronic and magnetic properties of the bulk material were modulated by superparamagnetic size effects for thicknesses below 2 nm, revealing specific surface and interface features. In contrast, the oxide films with FeO stoichiometry, which could be stabilized as thick as 4 nm under special preparation conditions, had electronic and magnetic properties that were very different from their bulk counterpart, wustite. Unusual long range magnetic order appeared at room temperature for thicknesses between three and ten monolayers, the appearance of which requires severe structural modification from the rock-salt structure.
The structural and magnetic properties of ultrathin FeO(111) films on Pt(111) with thicknesses from 1 to 16 monolayers (ML) were studied using the nuclear inelastic scattering (NIS) of synchrotron radiation. Distinct evolution of vibrational characte
In using the fully relativist
The growth and characterization of epitaxial Co3O4(111) films grown by oxygen plasma-assisted molecular beam epitaxy on single crystalline a-Al2O3(0001) is reported. The Co3O4(111) grows single crystalline with the epitaxial relation Co3O4(111)[-12-1
We report on the structure, magnetization, magnetic anisotropy, and domain morphology of ultrathin yttrium iron garnet (YIG)/Pt films with thickness ranging from 3 to 90 nm. We find that the saturation magnetization is close to the bulk value in the
A combined approach using first-principles calculations and spin dynamics simulations is applied to study Ni/Ir$_{n}$/Pt(111) ($n=0,1,2$) films. The lowest-energy states are predicted to be almost degenerate with negligble energy differences between