ترغب بنشر مسار تعليمي؟ اضغط هنا

A temporal steering inequality

326   0   0.0 ( 0 )
 نشر من قبل Yueh-Nan Chen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum steering is the ability to remotely prepare different quantum states by using entangled pairs as a resource. Very recently, the concept of steering has been quantified with the use of inequalities, leading to substantial applications in quantum information and communication science. Here, we highlight that there exists a natural temporal analogue of the steering inequality when considering measurements on a single object at different times. We give non-trivial operational meaning to violations of this temporal inequality by showing that it is connected to the security bound in the BB84 protocol and thus may have applications in quantum communication.



قيم البحث

اقرأ أيضاً

Invisible cloaks provide a way to hide an object under the detection of waves. A perfect cloak guides the incident waves through the cloaking shell without any distortion. In most cases, some important quantum degrees of freedom, e.g. electron spin o r photon polarization, are not taken into account when designing a cloak. Here, we propose to use the temporal steering inequality of these degrees of freedom to detect the existence of an invisible cloak.
Temporal steering is a form of temporal correlation between the initial and final state of a quantum system. It is a temporal analogue of the famous Einstein-Podolsky-Rosen (spatial) steering. We demonstrate, by measuring the photon polarization, tha t temporal steering allows two parties to verify if they have been interacting with the same particle, even if they have no information about what happened with the particle in between the measurements. This is the first experimental study of temporal steering. We also performed experimental tests, based on the violation of temporal steering inequalities, of the security of two quantum key distribution protocols against individual attacks. Thus, these results can lead to applications for secure quantum communications and quantum engineering.
Einstein-Podolsky-Rosen (EPR) steering is a type of quantum correlation which allows one to remotely prepare, or steer, the state of a distant quantum system. While EPR steering can be thought of as a purely spatial correlation there does exist a tem poral analogue, in the form of single-system temporal steering. However, a precise quantification of such temporal steering has been lacking. Here we show that it can be measured, via semidefinite programming, with a temporal steerable weight, in direct analogy to the recently proposed EPR steerable weight. We find a useful property of the temporal steerable weight in that it is a non-increasing function under completely-positive trace-preserving maps and can be used to define a sufficient and practical measure of strong non-Markovianity.
The Einstein-Podolsky-Rosen (EPR) paradox is one of the milestones in quantum foundations, arising from the lack of local realistic description of quantum mechanics. The EPR paradox has stimulated an important concept of quantum nonlocality, which ma nifests itself by three different types: quantum entanglement, quantum steering, and Bell nonlocality. Although Bell nonlocality is more often used to show the quantum nonlocality, the original EPR paradox is essentially a steering paradox. In this work, we formulate the original EPR steering paradox into a contradiction equality,thus making it amenable to an experimental verification. We perform an experimental test of the steering paradox in a two-qubit scenario. Furthermore, by starting from the steering paradox, we generate a generalized linear steering inequality and transform this inequality into a mathematically equivalent form, which is more friendly for experimental implementation, i.e., one may only measure the observables in $x$-, $y$-, or $z$-axis of the Bloch sphere, rather than other arbitrary directions. We also perform experiments to demonstrate this scheme. Within the experimental errors, the experimental results coincide with the theoretical predictions. Our results deepen the understanding of quantum foundations and provide an efficient way to detect the steerability of quantum states.
We consider the uncertainty bound on the sum of variances of two incompatible observables in order to derive a corresponding steering inequality. Our steering criterion when applied to discrete variables yields the optimum steering range for two qubi t Werner states in the two measurement and two outcome scenario. We further employ the derived steering relation for several classes of continuous variable systems. We show that non-Gaussian entangled states such as the photon subtracted squeezed vacuum state and the two-dimensional harmonic oscillator state furnish greater violation of the sum steering relation compared to the Reid criterion as well as the entropic steering criterion. The sum steering inequality provides a tighter steering condition to reveal the steerability of continuous variable states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا