ﻻ يوجد ملخص باللغة العربية
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.
Resistivity and Hall effect measurements of EuFe$_2$As$_2$ up to 3.2,GPa indicate no divergence of quasiparticle effective mass at the pressure $P_mathrm{c}$ where the magnetic and structural transition disappears. This is corroborated by analysis of
The Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state near the antiferromagnetic quantum critical point (AFQCP) is investigated by analyzing the two dimensional Hubbard model on the basis of the fluctuation exchange (FLEX) approximation. The phase diagram
We report a high-pressure single crystal study of the superconducting ferromagnet UCoGe. Ac-susceptibility and resistivity measurements under pressures up to 2.2 GPa show ferromagnetism is smoothly depressed and vanishes at a critical pressure $p_c =
Recent experiments on electron- or hole-doped SrTiO$_{3}$ have revealed a hitherto unknown form of superconductivity, where the Fermi energy of the paired electrons is much lower than the energies of the bosonic excitations thought to be responsible
We investigate the interplay between charge order and superconductivity near an antiferromagnetic quantum critical point using sign-problem-free Quantum Monte Carlo simulations. We establish that, when the electronic dispersion is particle-hole symme