ﻻ يوجد ملخص باللغة العربية
The {tt SANC} computer system is aimed at support of analytic and numeric calculations for experiments at colliders. The system is reviewed briefly. Recent results on high-precision description of the Drell-Yan processes at the LHC are presented. Special attention is paid to the evaluation of higher order final-state QED corrections to the single $W$ and $Z$ boson production processes. A new Monte Carlo integrator {tt mcsanc} suited for description of a series of high-energy physics processes at the one-loop precision level is presented.
We present a description of calculations of the amplitude for E+ E- --> F anti-F process with account of electroweak and QED one-loop corrections. This study is performed within the framework of the project SANC. The calculations are done within the
We elaborate on GoSam, a code-writer for automated one-loop calculations. After recalling its main features, we present a selection of phenomenological results recently obtained, giving relevance at the evaluation of NLO QCD corrections to the produc
Modules and packages for the one-loop calculations at partonic level represent the first level of SANC output computer product. The next level represents Monte Carlo integrator mcsanc, realizing fully differential hadron level calculations (convoluti
In this note we summarize the status of the standard SANC modules (in the EW and QCD sectors of the Neutral Current branch - version 1.20 and the Charged Current branch - version 1.20). A
The global R* operation is a powerful method for computing renormalisation group functions. This technique, based on the principle of infrared rearrangement, allows to express all the ultraviolet counterterms in terms of massless propagator integrals