ترغب بنشر مسار تعليمي؟ اضغط هنا

Infinitesimal and square-zero extensions of simplicial algebras

123   0   0.0 ( 0 )
 نشر من قبل Mauro Porta
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the notions of infinitesimal extension and square-zero extension in the context of simplicial commutatie algebras. We next investigate their mutual relationship and we show that the Postnikov tower of a simplicial commutative algebra is built out of square-zero extensions. We conclude the notes with two applications: we give connectivity estimates for the cotangent complex and we show how obstructions can be seen as deformations over simplicial rings.



قيم البحث

اقرأ أيضاً

We describe infinitesimal deformations of complex naturally graded filiform Leibniz algebras. It is known that any $n$-dimensional filiform Lie algebra can be obtained by a linear integrable deformation of the naturally graded algebra $F_n^3(0)$. We establish that in the same way any $n$-dimensional filiform Leibniz algebra can be obtained by an infinitesimal deformation of the filiform Leibniz algebras $F_{n}^1,$ $F_{n}^2$ and $F_{n}^3(alpha)$. Moreover, we describe the linear integrable deformations of above-mentioned algebras with a fixed basis of $HL^2$ in the set of all $n$-dimensional Leibniz algebras. Among these deformations we found one new rigid algebra.
Let G be a connected split reductive group over a complete discrete valuation ring of mixed characteristic. We use the theory of intermediate extensions due to Abe-Caro and arithmetic Beilinson-Bernstein localization to classify irreducible modules o ver the crystalline distribution algebra of G in terms of overconvergent isocrystals on locally closed subspaces in the (formal) flag variety of G. We treat the case of SL(2) as an example.
The main result of the paper is a flat extension theorem for positive linear functionals on *-algebras. The theorem is applied to truncated moment problems on cylinder sets, on matrices of polynomials and on enveloping algebras of Lie algebras.
In this paper, we compute the center of the infinitesimal Hecke algebras Hz associated to sl_2 ; then using nontriviality of the center, we study representations of these algebras in the framework of the BGG category O. We also discuss central elemen ts in infinitesimal Hecke algebras over gl(n) and sp(2n) for all n. We end by proving an analogue of the theorem of Duflo for Hz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا