ﻻ يوجد ملخص باللغة العربية
We describe infinitesimal deformations of complex naturally graded filiform Leibniz algebras. It is known that any $n$-dimensional filiform Lie algebra can be obtained by a linear integrable deformation of the naturally graded algebra $F_n^3(0)$. We establish that in the same way any $n$-dimensional filiform Leibniz algebra can be obtained by an infinitesimal deformation of the filiform Leibniz algebras $F_{n}^1,$ $F_{n}^2$ and $F_{n}^3(alpha)$. Moreover, we describe the linear integrable deformations of above-mentioned algebras with a fixed basis of $HL^2$ in the set of all $n$-dimensional Leibniz algebras. Among these deformations we found one new rigid algebra.
In this paper we describe the infinitesimal deformations of null-filiform Leibniz superalgebras over a field of zero characteristic. It is known that up to isomorphism in each dimension there exist two such superalgebras $NF^{n,m}$. One of them is a
In this paper we show that the method for describing solvable Lie algebras with given nilradical by means of non-nilpotent outer derivations of the nilradical is also applicable to the case of Leibniz algebras. Using this method we extend the classif
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform no
In this paper solvable Leibniz algebras with naturally graded non-Lie $p$-filiform $(n-pgeq4)$ nilradical and with one-dimensional complemented space of nilradical are described. Moreover, solvable Leibniz algebras with abelian nilradical and extrema
In this work the description up to isomorphism of complex naturally graded quasi-filiform Zinbiel algebras is obtained.