ﻻ يوجد ملخص باللغة العربية
Models with one warped and two unwarped extra dimensions allow for the solution of a number of open questions in particle physics. They can be used to solve the hierarchy problem in the same sense as Randall-Sundrum extra dimensions, they incorporate the Randall-Sundrum approach to flavor, and they generate a dark matter candidate via Kaluza-Klein parity in the flat extra dimensions. In this paper, we examine the models AdS_5 x T_2 and AdS_5 x S_2, deriving the Kaluza-Klein spectrum for fermions propagating in the bulk. While the toroidal model allows for a chiral zero mode, we find that the positive curvature of the spherical model disallows all zero modes without further modifications.
Randall Sundrum models provide a possible explanation of (gauge-gravity) hierarchy, whereas discrete symmetry flavor groups yield a possible description of the texture of Standard Model fermion masses. We use both these ingredients to propose a five-
A detailed phenomenological analysis of neutral kaon mixing in little Randall-Sundrum models is presented. It is shown that the constraints arising from the CP-violating quantity epsilon_K can, depending on the value of the ultra-violet cutoff, be ev
We present a Randall-Sundrum toy model with an added scalar singlet that couples only to KK fermions in the bulk. Such a scalar would nontrivially affect radion phenomenology. In addition, we examine the radion phenomenology in light of the new scala
In extra dimensions, the quark and lepton mass hierarchy can be reproduced from the same order bulk mass parameters, and standard model fermion families can be generated from one generation in the high dimensional space. We try to explain the origin
Using a low-energy effective field theory approach, we study some properties of models with large extra dimensions, in which quarks and leptons have localized wave functions in the extra dimensions. We consider models with two types of gauge groups: