ﻻ يوجد ملخص باللغة العربية
In this paper we present a new measurement setup, where a transitionedge sensor detector array is used to detect X-rays in particle induced X-ray emission measurements with a 2 MeV proton beam. Transition-edge sensors offer orders of magnitude improvement in energy resolution compared to conventional silicon or germanium detectors, making it possible to recognize spectral lines in materials analysis that have previously been impossible to resolve, and to get chemical information from the elements. Our sensors are cooled to the operation temperature (65 mK) with a cryogen-free adiabatic demagnetization refrigerator, which houses a specially designed X-ray snout that has a vacuum tight window to couple in the radiation. For the best pixel, the measured instrumental energy resolution was 3.06 eV full width at half maximum at 5.9 keV.We discuss the current status of the project, benefits of transition-edge sensors when used in particle induced X-ray emission spectroscopy, and the results from the first measurements.
At Argonne National Laboratory, we are developing hard X-ray (2 to 20 keV) Transition Edge Sensor (TES) arrays for beamline science. The significantly improved energy resolution provided by superconducting detectors compared to semiconductor-based en
We report initial measurements on our firstMoAu Transition Edge Sensors (TESs). The TESs formed from a bilayer of 40 nm of Mo and 106 nm of Au showed transition temperatures of about 320 mK, higher than identical TESs with a MoCu bilayer which is con
Transition Edge Sensors are ultra-sensitive superconducting detectors with applications in many areas of research, including astrophysics. The device consists of a superconducting thin film, often with additional normal metal features, held close to
We show the proof-of-principle detection of light at 1550 nm coupled evanescently from a titanium in-diffused lithium niobate waveguide to a superconducting transition edge sensor. The coupling efficiency strongly depends on the polarization, the ove
We are developing large TES arrays in combination with FDM readout for the next generation of X-ray space observatories. For operation under AC-bias, the TESs have to be carefully designed and optimized. In particular, the use of high aspect ratio de