ﻻ يوجد ملخص باللغة العربية
In an ideal bulk topological-insulator (TI) conducting surface states protected by time reversal symmetry enfold an insulating crystal. However, the archetypical TI, Bi2Se3, is actually never insulating; it is in fact a relatively good metal. Nevertheless, it is the most studied system among all the TIs, mainly due to its simple band-structure and large spin-orbit gap. Recently it was shown that copper intercalated Bi2Se3 becomes superconducting and it was suggested as a realization of a topological superconductor (TSC). Here we use a combination of techniques that are sensitive to the shape of the Fermi surface (FS): the Shubnikov-de Haas (SdH) effect and angle resolved photoemission spectroscopy (ARPES) to study the evolution of the FS shape with carrier concentration, n. We find that as n increases, the FS becomes 2D-like. These results are of crucial importance for understanding the superconducting properties of CuxBi2Se3.
Twisting van der Waals heterostructures to induce correlated many-body states provides a novel tuning mechanism in solid-state physics. In this work, we theoretically investigate the fate of the surface Dirac cone of a three-dimensional topological i
Electrons on the surface of a strong topological insulator, such as Bi2Te3 or Bi1-xSnx, form a topologically protected helical liquid whose excitation spectrum contains an odd number of massless Dirac fermions. A theoretical survey and classification
In 3D topological insulators achieving a genuine bulk-insulating state is an important research topic. Recently, the material system (Bi,Sb)$_{2}$(Te,Se)$_{3}$ (BSTS) has been proposed as a topological insulator with high resistivity and a low carrie
The evolution from an anomalous metallic phase to a Mott insulator within the two-dimensional Hubbard model is investigated by means of the Cellular Dynamical Mean-Field Theory. We show that the density-driven Mott metal-insulator transition is appro
The surface of topological insulators is proposed as a promising platform for spintronics and quantum information applications. In particular, when time- reversal symmetry is broken, topological surface states are expected to exhibit a wide range of