ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetically induced spin reorientation on the surface of a topological insulator (a surface magnetic topological insulator MBE film)

128   0   0.0 ( 0 )
 نشر من قبل M Zahid Hasan
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The surface of topological insulators is proposed as a promising platform for spintronics and quantum information applications. In particular, when time- reversal symmetry is broken, topological surface states are expected to exhibit a wide range of exotic spin phenomena for potential implementation in electronics. Such devices need to be fabricated using nanoscale artificial thin films. It is of critical importance to study the spin behavior of artificial topological MBE thin films associated with magnetic dopants, and with regards to quantum size effects related to surface-to-surface tunneling as well as experimentally isolate time-reversal breaking from non-intrinsic surface electronic gaps. Here we present observation of the first (and thorough) study of magnetically induced spin reorientation phenomena on the surface of a topological insulator. Our results reveal dramatic rearrangements of the spin configuration upon magnetic doping contrasted with chemically similar nonmagnetic doping as well as with quantum tunneling phenomena in ultra-thin high quality MBE films. While we observe that the spin rearrangement induced by quantum tunneling occurs in a time-reversal invariant fashion, we present critical and systematic observation of an out-of-plane spin texture evolution correlated with magnetic interactions, which breaks time-reversal symmetry, demonstrating microscopic TRB at a Kramers point on the surface.

قيم البحث

اقرأ أيضاً

111 - Qin Liu , Chao-Xing Liu , Cenke Xu 2008
The surface states of a topological insulator are described by an emergent relativistic massless Dirac equation in 2+1 dimensions. In contrast to graphene, there is an odd number of Dirac points, and the electron spin is directly coupled to the momen tum. We show that a magnetic impurity opens up a local gap and suppresses the local density of states. Furthermore, the Dirac electronic states mediate an RKKY interaction among the magnetic impurities which is always ferromagnetic, whenever the chemical potential lies near the Dirac point. These effects can be directly measured in STM experiments. We also study the case of quenched disorder through a renormalization group analysis.
85 - Stefan Divic 2021
We consider a magnetic skyrmion crystal formed at the surface of a topological insulator. Incorporating the exchange interaction between the helical Dirac surface states and the periodic Neel or Bloch skyrmion texture, we obtain the resulting electro nic band structures. We discuss the properties of the reconstructed skyrmion bands, namely the impact of symmetries on the energies and Berry curvature. We find substantive qualitative differences between the Neel and Bloch cases, with the latter generically permitting a low-energy tight-binding representation whose parameters are tightly constrained by symmetries. We explicitly construct the associated Wannier orbitals, which resemble the ring-like chiral bound states of helical Dirac fermions coupled to a single skyrmion in a ferromagnetic background. We construct a two-band tight-binding model with complex nearest-neighbor hoppings which captures the salient topological features of the low-energy bands. Our results are relevant to magnetic topological insulators (TIs), as well as to TI-magnetic thin film heterostructures, in which skyrmion crystals may be stabilized.
The emerging field of spinoptronics has a potential to supersede the functionality of modern electronics, while a proper description of strong light-matter coupling pose the most intriguing questions from both fundamental scientific and technological perspectives. In this paper we address a highly relevant issue for such a development. We theoretically explore spin dynamics on the surface of a 3D topological insulator (TI) irradiated with an off-resonant high-frequency electromagnetic wave. The strong coupling between electrons and the electromagnetic wave drastically modifies the spin properties of TI. The effects of irradiation are shown to result in anisotropy of electron energy spectrum near the Dirac point and suppression of spin current and are investigated in detail in this work.
Twisting van der Waals heterostructures to induce correlated many-body states provides a novel tuning mechanism in solid-state physics. In this work, we theoretically investigate the fate of the surface Dirac cone of a three-dimensional topological i nsulator subject to a superlattice potential. Using a combination of diagrammatic perturbation theory, lattice model simulations, and ab initio calculations we elucidate the unique aspects of twisting a single Dirac cone with an induced moire potential and the role of the bulk topology on the reconstructed surface band structure. We report a dramatic renormalization of the surface Dirac cone velocity as well as demonstrate a topological obstruction to the formation of isolated minibands. Due to the topological nature of the bulk, surface band gaps cannot open; instead, additional satellite Dirac cones emerge, which can be highly anisotropic and made quite flat. We discuss the implications of our findings for future experiments.
By generalizing the Kubo-Streda formula for calculating electrical conductivities to the thermoelectric coefficients, we theoretically study the anomalous Nernst effect (ANE) on the surface of a topological insulator induced by a finite concentration of magnetic impurities. The ANE is found to be modulated by the impurity scattering and thermal fluctuations, simultaneously, and so exhibits rich structures in the energy space. While the anomalous Hall conductivity is half-integer quantized with the Fermi level across the magnetic-impurity-induced gap, the anomalous Nernst signal (ANS) is fully suppressed and the thermopower is linear-dependent on the Fermi energy. Around the magnetic-impurity-induced localized levels, the ANS and thermopower are resonant enhanced. The suppression and enhancement of the thermoelectric coefficients will compete with each other as the magnetic impurity potential increases continually. More interestingly, when a finite charge potential is included, the resonant peaks of the ANS and thermopower will be renormalized, making the signs of the ANS and thermopower tunable by the strength of the charge potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا