ترغب بنشر مسار تعليمي؟ اضغط هنا

Patterns for computational effects arising from a monad or a comonad

262   0   0.0 ( 0 )
 نشر من قبل Jean-Guillaume Dumas
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents equational-based logics for proving first order properties of programming languages involving effects. We propose two dual inference system patterns that can be instanciated with monads or comonads in order to be used for proving properties of different effects. The first pattern provides inference rules which can be interpreted in the Kleisli category of a monad and the coKleisli category of the associated comonad. In a dual way, the second pattern provides inference rules which can be interpreted in the coKleisli category of a comonad and the Kleisli category of the associated monad. The logics combine a 3-tier effect system for terms consisting of pure terms and two other kinds of effects called constructors/observers and modifiers, and a 2-tier system for up-to-effects and strong equations. Each pattern provides generic rules for dealing with any monad (respectively comonad), and it can be extended with specific rules for each effect. The paper presents two use cases: a language with exceptions (using the standard monadic semantics), and a language with state (using the less standard comonadic semantics). Finally, we prove that the obtained inference system for states is Hilbert-Post complete.



قيم البحث

اقرأ أيضاً

Computational effects may often be interpreted in the Kleisli category of a monad or in the coKleisli category of a comonad. The duality between monads and comonads corresponds, in general, to a symmetry between construction and observation, for inst ance between raising an exception and looking up a state. Thanks to the properties of adjunction one may go one step further: the coKleisli-on-Kleisli category of a monad provides a kind of observation with respect to a given construction, while dually the Kleisli-on-coKleisli category of a comonad provides a kind of construction with respect to a given observation. In the previous examples this gives rise to catching an exception and updating a state. However, the interpretation of computational effects is usually based on a category which is not self-dual, like the category of sets. This leads to a breaking of the monad-comonad duality. For instance, in a distributive category the state effect has much better properties than the exception effect. This remark provides a novel point of view on the usual mechanism for handling exceptions. The aim of this paper is to build an equational semantics for handling exceptions based on the coKleisli-on-Kleisli category of the monad of exceptions. We focus on n-ary functions and conditionals. We propose a programmers language for exceptions and we prove that it has the required behaviour with respect to n-ary functions and conditionals.
We define a proof system for exceptions which is close to the syntax for exceptions, in the sense that the exceptions do not appear explicitly in the type of any expression. This proof system is sound with respect to the intended denotational semanti cs of exceptions. With this inference system we prove several properties of exceptions.
76 - Richard Garner 2020
It is well established that equational algebraic theories, and the monads they generate, can be used to encode computational effects. An important insight of Power and Shkaravska is that comodels of an algebraic theory T -- i.e., models in the opposi te category Set^op -- provide a suitable environment for evaluating the computational effects encoded by T. As already noted by Power and Shkaravska, taking comodels yields a functor from accessible monads to accessible comonads on Set. In this paper, we show that this functor is part of an adjunction -- the costructure-cosemantics adjunction of the title -- and undertake a thorough investigation of its properties. We show that, on the one hand, the cosemantics functor takes its image in what we term the presheaf comonads induced by small categories; and that, on the other, costructure takes its image in the presheaf monads induced by small categories. In particular, the cosemantics comonad of an accessible monad will be induced by an explicitly-described category called its behaviour category that encodes the static and dynamic properties of the comodels. Similarly, the costructure monad of an accessible comonad will be induced by a behaviour category encoding static and dynamic properties of the comonad coalgebras. We tie these results together by showing that the costructure-cosemantics adjunction is idempotent, with fixpoints to either side given precisely by the presheaf monads and comonads. Along the way, we illustrate the value of our results with numerous examples drawn from computation and mathematics.
We study a composition operation on monads, equivalently presented as large equational theories. Specifically, we discuss the existence of tensors, which are combinations of theories that impose mutual commutation of the operations from the component theories. As such, they extend the sum of two theories, which is just their unrestrained combination. Tensors of theories arise in several contexts; in particular, in the semantics of programming languages, the monad transformer for global state is given by a tensor. We present two main results: we show that the tensor of two monads need not in general exist by presenting two counterexamples, one of them involving finite powerset (i.e. the theory of join semilattices); this solves a somewhat long-standing open problem, and contrasts with recent results that had ruled out previously expected counterexamples. On the other hand, we show that tensors with bounded powerset monads do exist from countable powerset upwards.
101 - Swaraj Dash 2021
A point process on a space is a random bag of elements of that space. In this paper we explore programming with point processes in a monadic style. To this end we identify point processes on a space X with probability measures of bags of elements in X. We describe this view of point processes using the composition of the Giry and bag monads on the category of measurable spaces and functions and prove that this composition also forms a monad using a distributive law for monads. Finally, we define a morphism from a point process to its intensity measure, and show that this is a monad morphism. A special case of this monad morphism gives us Walds Lemma, an identity used to calculate the expected value of the sum of a random number of random variables. Using our monad we define a range of point processes and point process operations and compositionally compute their corresponding intensity measures using the monad morphism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا