ترغب بنشر مسار تعليمي؟ اضغط هنا

Study on the temperature dependence of BGO light yield

302   0   0.0 ( 0 )
 نشر من قبل Peilong Wang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature dependence of BGO coupled with photomultiplier tube R5610A-01 was studied in the range of -30{deg}C~30{deg}C. The temperature coefficient of the BGO and R5610A in whole was tested to be -1.82%. And the temperature coefficient of the gain of the R5610A is -0.44% which was tested in the same situation using a blue LED. Thus the temperature coefficient of BGOs light yield can be evaluated as -1.38%.

قيم البحث

اقرأ أيضاً

A BGO electromagnetic calorimeter (ECAL) is built for the DArk Matter Particle Explorer (DAMPE) mission. The effect of temperature on the BGO ECAL was investigated with a thermal vacuum experiment. The light output of a BGO crystal depends on tempera ture significantly. The temperature coefficient of each BGO crystal bar has been calibrated, and a correction method is also presented in this paper.
The BGO calorimeter, which provides a wide measurement range of the primary cosmic ray spectrum, is a key sub-detector of Dark Matter Particle Explorer (DAMPE). The readout electronics of calorimeter consists of 16 pieces of Actel ProASIC Plus FLASH- based FPGA, of which the design-level flip-flops and embedded block RAMs are single event upset (SEU) sensitive in the harsh space environment. Therefore to comply with radiation hardness assurance (RHA), SEU mitigation methods, including partial triple modular redundancy (TMR), CRC checksum, and multi-domain reset are analyzed and tested by the heavy-ion beam test. Composed of multi-level redundancy, a FPGA design with the characteristics of SEU tolerance and low resource consumption is implemented for the readout electronics.
128 - D. Gooding , J. Gruszko , C. Grant 2018
Liquid scintillators doped with metals are needed for a variety of measurements in nuclear and particle physics. Nanoparticles provide a mechanism to dope the scintillator and their unique optical properties could be used to enhance detection capabil ities. We present here the first study of lead-based perovskite nanoparticles for this application. Perovskites are an attractive choice due to the versatility of their crystal structure and their ease of synthesis.
The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at searching for dark matter indirectly by measuring the spectra of photons, electrons and positrons originating from deep space. The BGO electromagnetic calorimeter is one of the key sub-detectors of the DAMPE, which is designed for high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, some methods for energy correction are discussed and tried, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The results of Geant4 simulation and beam test data (at CERN) are presented.
We present measurements of nonproportionality in the scintillation light yield of bismuth germanate (BGO) for gamma-rays with energies between 6 keV and 662 keV. The scintillation light was read out by avalanche photodiodes (APDs) with both the BGO c rystals and APDs operated at a temperature of approximately 90 K. Data were obtained using radioisotope sources to illuminate both a single BGO crystal in a small test cryostat and a 12-element detector in a neutron radiative beta-decay experiment. In addition one datum was obtained in a 4.6 T magnetic field based on the bismuth K x-ray escape peak produced by a continuum of background gamma rays in this apparatus. These measurements and comparison to prior results were motivated by an experiment to study the radiative decay mode of the free neutron. The combination of data taken under different conditions yields a reasonably consistent picture for BGO nonproportionality that should be useful for researchers employing BGO detectors at low gamma ray energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا