ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Sub-Micron Stud-Via Technology for Superconductor VLSI Circuits

45   0   0.0 ( 0 )
 نشر من قبل Sergey Tolpygo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A fabrication process has been developed for fully planarized Nb-based superconducting inter-layer connections (vias) with minimum size down to 250 nm for superconductor very large scale integrated (VLSI) circuits with 8 and 10 superconducting layers on 200-mm wafers. Instead of single Nb wiring layers, it utilizes Nb/Al/Nb trilayers for each wiring layer to form Nb pillars (studs) providing vertical connections between the wires etched in the bottom layer of the trilayer and the next wiring layer that is also deposited as a Nb/Al/Nb trilayer. This technology makes possible a dramatic increase in the density of superconducting digital circuits by reducing the area of interconnects with respect to presently utilized etched contact holes between superconducting layers and by enabling the use of stacked vias. Results on the fabrication and size dependence of electric properties of Nb studs with dimensions near the resolution limit of 248-nm photolithography are presented in the normal and superconducting states. Superconducting critical current density in the fabricated stud-vias is about 0.3 A/{mu}m2 and approaches the depairing current density of Nb films.

قيم البحث

اقرأ أيضاً

We present a fabrication scheme and testing results for epitaxial sub-micrometer Josephson junctions. The junctions are made using a high-temperature (1170 K) via process yielding junctions as small as 0.8 mu m in diameter by use of optical lithograp hy. Sapphire (Al2O3) tunnel-barriers are grown on an epitaxial Re/Ti multilayer base-electrode. We have fabricated devices with both Re and Al top electrodes. While room-temperature (295 K) resistance versus area data are favorable for both types of top electrodes, the low-temperature (50 mK) data show that junctions with the Al top electrode have a much higher subgap resistance. The microwave loss properties of the junctions have been measured by use of superconducting Josephson junction qubits. The results show that high subgap resistance correlates to improved qubit performance.
Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of th e field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of $approx 2muPhi_0/Hz^{1/2}$. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution, but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.
Using magnetic force microscopy operating at sub-Kelvin temperatures we characterize the heavy-fermion superconductor CeCoIn$_5$. We pinpoint the absolute London penetration depth $lambda(0) = 435 pm 20$ nm and report its temperature dependence, whic h is closely linked to the symmetry of the superconducting gap. In addition, we directly measure the pinning force of individual Abrikosov vortices and estimate the critical current density $j_c = 9 times 10^4$ A/cm$^2$. In contrast to the related, well-established tunnel diode oscillator technique, our method is capable of resolving inhomogeneities $locally$ on the micrometer-scale at ultra-low temperature.
278 - C. Kopas , S. Zhang , J. Gonzales 2021
Germanium thin films are an excellent candidate for use as a low-loss dielectric in superconducting microwave resonators, a low-loss inter-layer metal wiring dielectric, and passivation layers in microwave and Josephson junction devices. In Ge/Nb str uctures deposited at 400 {deg}C, we observe intermixing over as much as 20 nm. The addition of a 10 nm Ta diffusion barrier layer reduces the superconductor/dielectric intermixing to less than 5 nm and enhances the structural properties of deposited a-Ge layers based on Raman spectroscopy. Additionally, superconducting microwave resonators fabricated at room-temperature on crystalline Ge substrates with a Ta barrier layer show marked improvement in total and power-dependent two-level system microwave losses.
We study low-temperature transport through a Coulomb blockaded quantum dot (QD) contacted by a normal (N), and a superconducting (S) electrode. Within an effective cotunneling model the conduction electron self energy is calculated to leading order i n the cotunneling amplitudes and subsequently resummed to obtain the nonequilibrium T-matrix, from which we obtain the nonlinear cotunneling conductance. For even occupied dots the system can be conceived as an effective S/N-cotunnel junction with subgap transport mediated by Andreev reflections. The net spin of an odd occupied dot, however, leads to the formation of sub-gap resonances inside the superconducting gap which gives rise to a characteristic peak-dip structure in the differential conductance, as observed in recent experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا