ﻻ يوجد ملخص باللغة العربية
We present a fabrication scheme and testing results for epitaxial sub-micrometer Josephson junctions. The junctions are made using a high-temperature (1170 K) via process yielding junctions as small as 0.8 mu m in diameter by use of optical lithography. Sapphire (Al2O3) tunnel-barriers are grown on an epitaxial Re/Ti multilayer base-electrode. We have fabricated devices with both Re and Al top electrodes. While room-temperature (295 K) resistance versus area data are favorable for both types of top electrodes, the low-temperature (50 mK) data show that junctions with the Al top electrode have a much higher subgap resistance. The microwave loss properties of the junctions have been measured by use of superconducting Josephson junction qubits. The results show that high subgap resistance correlates to improved qubit performance.
For high-performance superconducting quantum devices based on Josephson junctions (JJs) decreasing lateral sizes is of great importance. Fabrication of sub-mu m JJs is challenging due to non-flat surfaces with step heights of up to several 100 nm gen
Magnetic flux quantization in superconductors allows the implementation of fast and energy-efficient digital superconducting circuits. However, the information representation in magnetic flux severely limits their functional density presenting a long
We have studied fundamental properties of weak-link Sr2RuO4/Sr2RuO4 Josephson junctions fabricated by making a narrow constriction on superconducting Sr2RuO4 films through laser micro-patterning. The junctions show a typical overdamped behavior with
We combine electron beam lithography and masked anodization of epitaxial aluminium to define tunnel junctions via selective oxidation, alleviating the need for wet-etch processing or direct deposition of dielectric materials. Applying this technique
New technology for superconductor integrated circuits has been developed and is presented. It employs diffusion stoplayers (DSLs) to protect Josephson junctions (JJs) from interlayer migration of impurities, improve JJ critical current (Ic) targeting