ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of the CMSSM against sfermion VEVs

49   0   0.0 ( 0 )
 نشر من قبل Ben O'Leary
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery of a Higgs boson by the LHC experiments has profound implications for supersymmetric models. In particular, in the context of restricted models, such as the supergravity-inspired constrained minimal supersymmetric standard model, one finds that preferred regions in parameter space have large soft supersymmetry-breaking trilinear couplings. This potentially gives rise to charge- and/or color-breaking minima besides those with the correct breaking of $SU(2)_L times U(1)_Y$. We investigate the stability of parameter points in this model against tunneling to possible deeper color- and/or charge-breaking minima of the one-loop effective potential. We find that allowed regions of the parameter space with light staus or with light stops are seriously constrained by the requirement that the tunneling time out of the normal electroweak-symmetry-breaking vacuum is more than a fifth of the age of the known Universe. We also find that thumb rule conditions on Lagrangian parameters based on specific directions in the tree-level potential are of limited use.

قيم البحث

اقرأ أيضاً

We introduce a set of CMSSM benchmark scenarios that take into account the constraints from LEP, Tevatron, $b to s gamma$, $g_mu - 2$ and cosmology. The benchmark points are chosen to span the range of different generic possibilities, including focus -point models, points where coannihilation effects on the relic density are important, and points with rapid relic annihilation via direct-channel Higgs poles, as well as points with smaller sparticle masses. We make initial estimates of the physics reaches of different accelerators, including the LHC, and $e^+ e^-$ colliders in the sub- and multi-TeV ranges. We stress the complementarity of hadron and lepton colliders, with the latter favoured for non-strongly-interacting particles and precision measurements.
Recent ATLAS data significantly extend the exclusion limits for supersymmetric particles. We examine the impact of such data on global fits of the constrained minimal supersymmetric standard model (CMSSM) to indirect and cosmological data. We calcula te the likelihood map of the ATLAS search, taking into account systematic errors on the signal and on the background. We validate our calculation against the ATLAS determinaton of 95% confidence level exclusion contours. A previous CMSSM global fit is then re-weighted by the likelihood map, which takes a bite at the high probability density region of the global fit, pushing scalar and gaugino masses up.
We investigate the constrained Minimal Supersymmetric Standard Model (cMSSM) in the light of constraining experimental and observational data from precision measurements, astrophysics, direct supersymmetry searches at the LHC and measurements of the properties of the Higgs boson, by means of a global fit using the program Fittino. As in previous studies, we find rather poor agreement of the best fit point with the global data. We also investigate the stability of the electro-weak vacuum in the preferred region of parameter space around the best fit point. We find that the vacuum is metastable, with a lifetime significantly longer than the age of the Universe. For the first time in a global fit of supersymmetry, we employ a consistent methodology to evaluate the goodness-of-fit of the cMSSM in a frequentist approach by deriving p-values from large sets of toy experiments. We analyse analytically and quantitatively the impact of the choice of the observable set on the p-value, and in particular its dilution when confronting the model with a large number of barely constraining measurements. Finally, for the preferred sets of observables, we obtain p-values for the cMSSM below 10%, i.e. we exclude the cMSSM as a model at the 90% confidence level.
We make a frequentist analysis of the parameter space of the CMSSM and NUHM1, using a Markov Chain Monte Carlo (MCMC) with 95 (221) million points to sample the CMSSM (NUHM1) parameter spaces. Our analysis includes the ATLAS search for supersymmetric jets + MET signals using ~ 5/fb of LHC data at 7 TeV, which we apply using PYTHIA and a Delphes implementation that we validate in the relevant parameter regions of the CMSSM and NUHM1. Our analysis also includes the constraint imposed by searches for B_s to mu+mu- by LHCb, CMS, ATLAS and CDF, and the limit on spin-independent dark matter scattering from 225 live days of XENON100 data. We assume M_h ~ 125 GeV, and use a full set of electroweak precision and other flavour-physics observables, as well as the cold dark matter density constraint. The ATLAS 5/fb constraint has relatively limited effects on the 68 and 95% CL regions in the (m_0, m_1/2) planes of the CMSSM and NUHM1. The new B_s to mu+mu- constraint has greater impacts on these CL regions, and also impacts significantly the 68 and 95% CL regions in the (M_A, tan beta) planes of both models, reducing the best-fit values of tan beta. The recent XENON100 data eliminate the focus-point region in the CMSSM and affect the 68 and 95% CL regions in the NUHM1. In combination, these new constraints reduce the best-fit values of m_0, m_1/2 in the CMSSM, and increase the global chi^2 from 31.0 to 32.8, reducing the p-value from 12% to 8.5%. In the case of the NUHM1, they have little effect on the best-fit values of m_0, m_1/2, but increase the global chi^2 from 28.9 to 31.3, thereby reducing the p-value from 15% to 9.1%.
74 - M.E. Cabrera 2011
We propose a rigorous and effective way to compare experimental and theoretical histograms, incorporating the different sources of statistical and systematic uncertainties. This is a useful tool to extract as much information as possible from the com parison between experimental data with theoretical simulations, optimizing the chances of identifying New Physics at the LHC. We illustrate this by showing how a search in the CMSSM parameter space, using Bayesian techniques, can effectively find the correct values of the CMSSM parameters by comparing histograms of events with multijets + missing transverse momentum displayed in the effective-mass variable. The procedure is in fact very efficient to identify the true supersymmetric model, in the case supersymmetry is really there and accessible to the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا