ترغب بنشر مسار تعليمي؟ اضغط هنا

Histogram comparison as a powerful tool for the search of new physics at LHC. Application to CMSSM

75   0   0.0 ( 0 )
 نشر من قبل Roberto Ruiz De Austri
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف M.E. Cabrera




اسأل ChatGPT حول البحث

We propose a rigorous and effective way to compare experimental and theoretical histograms, incorporating the different sources of statistical and systematic uncertainties. This is a useful tool to extract as much information as possible from the comparison between experimental data with theoretical simulations, optimizing the chances of identifying New Physics at the LHC. We illustrate this by showing how a search in the CMSSM parameter space, using Bayesian techniques, can effectively find the correct values of the CMSSM parameters by comparing histograms of events with multijets + missing transverse momentum displayed in the effective-mass variable. The procedure is in fact very efficient to identify the true supersymmetric model, in the case supersymmetry is really there and accessible to the LHC.

قيم البحث

اقرأ أيضاً

It is widely considered that, for Higgs boson searches at the Large Hadron Collider, WH and ZH production where the Higgs boson decays to b anti-b are poor search channels due to large backgrounds. We show that at high transverse momenta, employing s tate-of-the-art jet reconstruction and decomposition techniques, these processes can be recovered as promising search channels for the standard model Higgs boson around 120 GeV in mass.
SND@LHC is an approved experiment equipped to detect scattering of neutrinos produced in the far-forward direction at the LHC, and aimed to measure their properties. In addition, the detector has a potential to search for new feebly interacting parti cles (FIPs) that may be produced in proton-proton collisions. In this paper, we discuss FIPs signatures at SND@LHC considering two classes of particles: stable FIPs that may be detected via their scattering, and unstable FIPs that decay inside the detector. We estimate the sensitivity of SND@LHC to probe scattering of leptophobic dark matter, and to detect decays of neutrino, scalar, and vector portal particles. Finally, we also compare and qualitatively analyze the potential of SND@LHC and FASER/FASER{ u} experiments for these searches.
It is interesting to search for new physics beyond the standard model at LHCb. We suggest that weak decays of doubly charmed baryon such as $Xi_{cc}(3520)^+, Xi_{cc}^{++}$ to charmless final states would be a possible signal for new physics. In this work, we consider two models, i.e. the unparticle and $Z$ as examples to study such possibilities. We also discuss the cases for $Xi^0_{bb}, Xi_{bb}^-$ which have not been observed yet, but one can expect to find them when LHCb begins running. Our numerical results show that these two models cannot result in sufficiently large decay widths, therefore if such modes are observed at LHCb, there must be a new physics other than the unparticle or $Z$ models.
114 - K. Piotrzkowski 2008
A significant fraction of pp collisions at the LHC will involve (quasi-real) photon interactions occurring at energies well beyond the electroweak energy scale. Hence, the LHC can to some extend be considered as a high-energy photon-photon or photon- proton collider. This offers a unique possibility for novel and complementary research where the available effective luminosity is small, relative to parton-parton interactions, but it is compensated by better known initial conditions and usually simpler final states. This is in a way a method for approaching some of the issues to be addressed by the future lepton collider. Such studies of photon interactions are possible at the LHC, thanks to the striking experimental signatures of events involving photon exchanges, in particular the presence of very forward scattered protons.
Many extensions of the Standard Model contain (pseudo)scalar bosons with masses in the TeV range. At hadron colliders, such particles would predominantly be produced in gluon fusion and would decay into top quark pair final sates, a signal that inter feres with the large QCD background $gg to tbar t$. This phenomenon is of interest for searches for by the LHC experiments. Here, we consider the signal and background interference in this process and study it in various benchmark scenarios, including models with extra singlet (pseudo)scalar resonances, two-Higgs doublet models, and the minimal supersymmetric extension of the SM with parameters chosen to obtain the measured light Higgs mass (the hMSSM). We allow for the possible exchanges of beyond the SM vector-like particles as well as scalar quarks. We calculate the possible interference effects including realistic estimates of the attainable detection efficiency and mass resolution. Studies of our benchmark scenarios indicate that searches with an LHC detector could permit the observation of the $tbar t$ final states or constrain significantly large regions of the parameter spaces of the benchmark scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا