ترغب بنشر مسار تعليمي؟ اضغط هنا

A Sound and Complete Algorithm for Learning Causal Models from Relational Data

498   0   0.0 ( 0 )
 نشر من قبل Marc Maier
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The PC algorithm learns maximally oriented causal Bayesian networks. However, there is no equivalent complete algorithm for learning the structure of relational models, a more expressive generalization of Bayesian networks. Recent developments in the theory and representation of relational models support lifted reasoning about conditional independence. This enables a powerful constraint for orienting bivariate dependencies and forms the basis of a new algorithm for learning structure. We present the relational causal discovery (RCD) algorithm that learns causal relational models. We prove that RCD is sound and complete, and we present empirical results that demonstrate effectiveness.



قيم البحث

اقرأ أيضاً

We consider the problem of mining signal temporal logical requirements from a dataset of regular (good) and anomalous (bad) trajectories of a dynamical system. We assume the training set to be labeled by human experts and that we have access only to a limited amount of data, typically noisy. We provide a systematic approach to synthesize both the syntactical structure and the parameters of the temporal logic formula using a two-steps procedure: first, we leverage a novel evolutionary algorithm for learning the structure of the formula; second, we perform the parameter synthesis operating on the statistical emulation of the average robustness for a candidate formula w.r.t. its parameters. We compare our results with our previous work [{BufoBSBLB14] and with a recently proposed decision-tree [bombara_decision_2016] based method. We present experimental results on two case studies: an anomalous trajectory detection problem of a naval surveillance system and the characterization of an Ineffective Respiratory effort, showing the usefulness of our work.
Causal inference is at the heart of empirical research in natural and social sciences and is critical for scientific discovery and informed decision making. The gold standard in causal inference is performing randomized controlled trials; unfortunate ly these are not always feasible due to ethical, legal, or cost constraints. As an alternative, methodologies for causal inference from observational data have been developed in statistical studies and social sciences. However, existing methods critically rely on restrictive assumptions such as the study population consisting of homogeneous elements that can be represented in a single flat table, where each row is referred to as a unit. In contrast, in many real-world settings, the study domain naturally consists of heterogeneous elements with complex relational structure, where the data is naturally represented in multiple related tables. In this paper, we present a formal framework for causal inference from such relational data. We propose a declarative language called CaRL for capturing causal background knowledge and assumptions and specifying causal queries using simple Datalog-like rules.CaRL provides a foundation for inferring causality and reasoning about the effect of complex interventions in relational domains. We present an extensive experimental evaluation on real relational data to illustrate the applicability of CaRL in social sciences and healthcare.
We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately i nfers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.
This tutorial overviews the state of the art in learning models over relational databases and makes the case for a first-principles approach that exploits recent developments in database research. The input to learning classification and regression models is a training dataset defined by feature extraction queries over relational databases. The mainstream approach to learning over relational data is to materialize the training dataset, export it out of the database, and then learn over it using a statistical package. This approach can be expensive as it requires the materialization of the training dataset. An alternative approach is to cast the machine learning problem as a database problem by transforming the data-intensive component of the learning task into a batch of aggregates over the feature extraction query and by computing this batch directly over the input database. The tutorial highlights a variety of techniques developed by the database theory and systems communities to improve the performance of the learning task. They rely on structural properties of the relational data and of the feature extraction query, including algebraic (semi-ring), combinatorial (hypertree width), statistical (sampling), or geometric (distance) structure. They also rely on factorized computation, code specialization, query compilation, and parallelization.
115 - Roni Stern , Brendan Juba 2017
In this paper we explore the theoretical boundaries of planning in a setting where no model of the agents actions is given. Instead of an action model, a set of successfully executed plans are given and the task is to generate a plan that is safe, i. e., guaranteed to achieve the goal without failing. To this end, we show how to learn a conservative model of the world in which actions are guaranteed to be applicable. This conservative model is then given to an off-the-shelf classical planner, resulting in a plan that is guaranteed to achieve the goal. However, this reduction from a model-free planning to a model-based planning is not complete: in some cases a plan will not be found even when such exists. We analyze the relation between the number of observed plans and the likelihood that our conservative approach will indeed fail to solve a solvable problem. Our analysis show that the number of trajectories needed scales gracefully.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا