ترغب بنشر مسار تعليمي؟ اضغط هنا

Remote control and telescope auto-alignment system for multiangle LIDAR under development at CEILAP, Argentina

149   0   0.0 ( 0 )
 نشر من قبل Juan Vicente Pallotta
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At CEILAP (CITEDEF-CONICET), a multiangle LIDAR is under development to monitor aerosol extinction coefficients in the frame of the CTA (Cherenkov Telescope Array) Project. This is an initiative to build the next generation of ground-based instruments to collect very high energy gamma-ray radiation (>10 GeV). The atmospheric conditions are very important for CTA observations, and LIDARs play an important role in the measurement of the aerosol optical depth at any direction. The LIDAR being developed at CEILAP was conceived to operate in harsh environmental conditions during the shifts, and these working conditions may produce misalignments. To minimize these effects, the telescopes comprising the reception unit are controlled by a self-alignment system. This paper describes the self-alignment method and hardware automation.



قيم البحث

اقرأ أيضاً

Axion-like particles (ALPs) are pseudo-scalar particles that are candidates for ultralight dark matter. ALPs interact with photons slightly and cause the rotational oscillation of linear polarization. DANCE searches for ALP dark matter by enhancing t he rotational oscillation in a bow-tie ring cavity. The signal to noise ratio of DANCE can be improved by long-term observation, and we are planning a year-long observation for the final DANCE. In this document, I will report on the control systems of the ring cavity we developed for the future long-term observation.
In this paper we describe an acoustic transceiver developed for the KM3NeT positioning system. The acoustic transceiver is composed of a commercial free flooded transducer, which works mainly in the 20-40 kHz frequency range and withstands high press ures (up to 500 bars). A sound emission board was developed that is adapted to the characteristics of the transducer and meets all requirements: low power consumption, high intensity of emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring the receiving signals with very good timing precision. The results of the different tests made with the transceiver in the laboratory and shallow sea water are described, as well as, the activities for its integration in the Instrumentation Line of the ANTARES neutrino telescope and in a NEMO tower for the in situ tests.
The Center for Underground Physics (CUP) of the Institute for Basic Science (IBS) is searching for the neutrinoless double-beta decay (0{ u}b{eta}b{eta}) of 100Mo in the molybdate crystals of the AMoRE experiment. The experiment requires pure scintil lation crystals to minimize internal backgrounds that can affect the 0{ u}b{eta}b{eta} signal. For the last few years, we have been growing and studying Li2MoO4 crystals in a clean-environment facility to minimize external contamination during the crystal growth. Before growing Li2100MoO4 crystal, we have studied Li2natMoO4 crystal growth by a conventional Czochralski (CZ) grower. We grew a few different kinds of Li2natMO4 crystals using different raw materials in a campaign to minimize impurities. We prepared the fused Al2O3 refractories for the growth of ingots. Purities of the grown crystals were measured with high purity germanium detectors and by inductively coupled plasma mass spectrometry. The results show that the Li2MoO4 crystal has purity levels suitable for rare-event experiments. In this study, we present the growth of Li2MoO4 crystals at CUP and their purities.
The innermost part of the ATLAS experiment will be a pixel detector containing around 1750 individual detector modules. A detector control system (DCS) is required to handle thousands of I/O channels with varying characteristics. The main building bl ocks of the pixel DCS are the cooling system, the power supplies and the thermal interlock system, responsible for the ultimate safety of the pixel sensors. The ATLAS Embedded Local Monitor Board (ELMB), a multi purpose front end I/O system with a CAN interface, is foreseen for several monitoring and control tasks. The Supervisory, Control And Data Acquisition (SCADA) system will use PVSS, a commercial software product chosen for the CERN LHC experiments. We report on the status of the different building blocks of the ATLAS pixel DCS.
70 - C.H. Kim , S.H. Kim , I.S. Lee 2018
The Belle II experiment at the SuperKEKB e+e- collider in KEK, Japan does start physics data-taking from early of 2018 with primary physics goal that is to probe the New Physics effect using heavy quark and lepton weak decays. During trigger and DAQ operation upon beam collision, it is important that Belle II detector (Fig. 1) status have to be monitored in a process of data-taking against an unexpected situation. Slow control system, built in the Control System Studio (CSS) which is a GUI window design tool based on Eclipse, is one of monitoring and controlling systems in Belle II operation. Database and archiver servers are connected to slow control system. Experimental parameters are downloaded to Belle II main database server which is based on PostgreSQL. Real-time results are stored in archiver server which is based on EPICS (The Experimental Physics and Industrial Control System) archiver appliances and tomcat which is open-source java servlet container. In this study, we report the development of slow control system for the Belle II electromagnetic calorimeter (ECL) trigger system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا