ﻻ يوجد ملخص باللغة العربية
The Center for Underground Physics (CUP) of the Institute for Basic Science (IBS) is searching for the neutrinoless double-beta decay (0{ u}b{eta}b{eta}) of 100Mo in the molybdate crystals of the AMoRE experiment. The experiment requires pure scintillation crystals to minimize internal backgrounds that can affect the 0{ u}b{eta}b{eta} signal. For the last few years, we have been growing and studying Li2MoO4 crystals in a clean-environment facility to minimize external contamination during the crystal growth. Before growing Li2100MoO4 crystal, we have studied Li2natMoO4 crystal growth by a conventional Czochralski (CZ) grower. We grew a few different kinds of Li2natMO4 crystals using different raw materials in a campaign to minimize impurities. We prepared the fused Al2O3 refractories for the growth of ingots. Purities of the grown crystals were measured with high purity germanium detectors and by inductively coupled plasma mass spectrometry. The results show that the Li2MoO4 crystal has purity levels suitable for rare-event experiments. In this study, we present the growth of Li2MoO4 crystals at CUP and their purities.
The annual modulation signal observed by the DAMA experiment is a long-standing question in the community of dark matter direct detection. This necessitates an independent verification of its existence using the same detection technique. The COSINE-1
COSINE-200 is the next phase of the ongoing COSINE-100 experiment. The main purpose of the experiment is the performance of an unambiguous verification of the annual modulation signals observed by the DAMA experiment. The success of the experiment cr
Aiming at the observation of cosmic-ray chemical composition at the knee energy region, we have been developinga new type air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522$^circ$ E, 30.102$^c
We present our latest ASIC, which is used for the readout of Cadmium Telluride double-sided strip detectors (CdTe DSDs) and high spectroscopic imaging. It is implemented in a 0.35 um CMOS technology (X-Fab XH035), consists of 64 readout channels, and
Axion-like particles (ALPs) are pseudo-scalar particles that are candidates for ultralight dark matter. ALPs interact with photons slightly and cause the rotational oscillation of linear polarization. DANCE searches for ALP dark matter by enhancing t