ﻻ يوجد ملخص باللغة العربية
We study two well-known classes of dualities in three dimensional N=2 supersymmetric field theories. In the first class there are non trivial interactions involving monopole operators while in the second class the dual gauge theories have Chern-Simons terms in the action. An RG flows connecting the first dual pair to the second one has been studied in the past and tested on the partition function on the squashed three sphere. Recently an opposite RG flow connecting the second dual pair to the first one has been studied in the case of unitary gauge groups. In this paper we study this flow on the partition function on the squashed three sphere. We verify that the equality between the partition functions of the original dual models is preserved in the IR, where the other dual pair is reached. We generalize the analysis to the case of symplectic and of orthogonal groups.
Seiberg-like dualities in $2+1$d quiver gauge theories with $4$ supercharges are investigated. We consider quivers made of various combinations of classical gauge groups $U(N)$, $Sp(N)$, $SO(N)$ and $SU(N)$. Our main focus is the mapping of the super
The relation between open topological strings and representation theory of symmetric quivers is explored beyond the original setting of the knot-quiver correspondence. Multiple cover generalizations of the skein relation for boundaries of holomorphic
Aspects of three dimensional $mathcal{N}=2$ gauge theories with monopole superpotentials and their dualities are investigated. The moduli spaces of a number of such theories are studied using Hilbert series. Moreover, we propose new dualities involvi
We study gauge theories with N=1 supersymmetry in 2+1 dimensions. We start by calculating the 1-loop effective superpotential for matter in an arbitrary representation. We then restrict ourselves to gauge theories with fundamental matter. Using the 1
We construct the T duals of certain type IIA brane configurations with one compact dimension (elliptic models) which contain orientifold planes. These configurations realize four-dimensional $NN=2$ finite field theories. For elliptic models with two