ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Effect of Surface Plasmon Excitation in Gapped Isotropic Topological Insulator Nanowires

176   0   0.0 ( 0 )
 نشر من قبل Mingda Li
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical investigation of the surface plasmon (SP) at the interface between topologically non-trivial cylindrical core and topological-trivial surrounding material, from the axion electrodynamics and modified constitutive relations. We find that the topological effect always leads to a red-shift of SP energy, while the energy red-shift decreases monotonically as core diameter decreases. A qualitative picture based on classical perturbation theory is given to explain these phenomena, from which we also infer that in order to enhance the shift, the difference between the inverse of dielectric constants of two materials shall be increased. We also find that the surrounding magnetic environment suppresses the topological effect. All these features can be well described by a simple ansatz surface wave, which is in good agreement with full electromagnetic eigenmodes. In addition, bulk plasmon energy at omega_{P}=17.5pm0.2eV for semiconducting Bi2Se3 nanoparticle is observed from high-resolution Electron Energy Loss Spectrum Image measurements.



قيم البحث

اقرأ أيضاً

Among the different platforms to engineer Majorana fermions in one-dimensional topological superconductors, topological insulator nanowires remain a promising option. Threading an odd number of flux quanta through these wires induces an odd number of surface channels, which can then be gapped with proximity induced pairing. Because of the flux and depending on energetics, the phase of this surface pairing may or may not wind around the wire in the form of a vortex. Here we show that for wires with discrete rotational symmetry, this vortex is necessary to produce a fully gapped topological superconductor with localized Majorana end states. Without a vortex the proximitized wire remains gapless, and it is only if the symmetry is broken by disorder that a gap develops, which is much smaller than the one obtained with a vortex. These results are explained with the help of a continuum model and validated numerically with a tight binding model, and highlight the benefit of a vortex for reliable use of Majorana fermions in this platform.
In this chapter we review our work on the theory of quantum transport in topological insulator nanowires. We discuss both normal state properties and superconducting proximity effects, including the effects of magnetic fields and disorder. Throughout we assume that the bulk is insulating and inert, and work with a surface-only theory. The essential transport properties are understood in terms of three special modes: in the normal state, half a flux quantum along the length of the wire induces a perfectly transmitted mode protected by an effective time reversal symmetry; a transverse magnetic field induces chiral modes at the sides of the wire, with different chiralities residing on different sides protecting them from backscattering; and, finally, Majorana zero modes are obtained at the ends of a wire in a proximity to a superconductor, when combined with a flux along the wire. Some parts of our discussion have a small overlap with the discussion in the review [Bardarson and Moore, Rep. Prog. Phys., 76, 056501, (2013)]. We do not aim to give a complete review of the published literature, instead the focus is mainly on our own and directly related work.
The non-trivial topology of the three-dimensional (3D) topological insulator (TI) dictates the appearance of gapless Dirac surface states. Intriguingly, when a 3D TI is made into a nanowire, a gap opens at the Dirac point due to the quantum confineme nt, leading to a peculiar Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these Dirac sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes (MZMs), which play a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here we show that by growing very thin ($sim$40-nm diameter) nanowires of the bulk-insulating topological insulator (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ and by tuning its chemical potential across the Dirac point with gating, one can unambiguously identify the Dirac sub-band structure. Specifically, the resistance measured on gate-tunable four-terminal devices was found to present non-equidistant peaks as a function of the gate voltage, which we theoretically show to be the unique signature of the quantum-confined Dirac surface states. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitised by an $s$-wave superconductor.
Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal- superconductor junction in the single-mode regime where an exactly quantized $2e^2/h$ zero-bias conductance can be observed over a wide range of realistic system parameters. This is achieved by inducing superconductivity in half of the wire, which can be tuned at will from trivial to topological with a parallel magnetic field, while a perpendicular field is used to gap out the normal part, except for two spatially separated chiral channels. The combination of chiral mode transport and perfect Andreev reflection makes the measurement robust to moderate disorder, and the quantization of conductance survives to much higher temperatures than in tunnel junction experiments. Our proposal may be understood as a variant of a Majorana interferometer which is easily realizable in experiments.
114 - Yi Huang , B. I. Shklovskii 2021
Three-dimensional topological insulator (TI) nanowires with quantized surface subband spectra are studied as a main component of Majorana bound states (MBS) devices. However, such wires are known to have large concentration $N sim 10^{19}$ cm$^{-3}$ of Coulomb impurities. It is believed that a MBS device can function only if the amplitude of long-range fluctuations of the random Coulomb potential $Gamma$ is smaller than the subband gap $Delta$. Here we calculate $Gamma$ for recently experimentally studied large-dielectric-constant (Bi$_{1-x}$Sb$_x$)$_2$Te$_{3}$ wires in a small-dielectric-constant environment (no superconductor). We show that provided by such a dielectric-constant contrast, the confinement of electric field of impurities within the wire allows more distant impurities to contribute into $Gamma$, leading to $Gamma sim 3Delta$. We also calculate a TI wire resistance as a function of the Fermi level and carrier concentration due to scattering on Coulomb and neutral impurities, and do not find observable discrete subband-spectrum related oscillations at $N gtrsim 10^{18}$ cm$^{-3}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا