ﻻ يوجد ملخص باللغة العربية
In this chapter we review our work on the theory of quantum transport in topological insulator nanowires. We discuss both normal state properties and superconducting proximity effects, including the effects of magnetic fields and disorder. Throughout we assume that the bulk is insulating and inert, and work with a surface-only theory. The essential transport properties are understood in terms of three special modes: in the normal state, half a flux quantum along the length of the wire induces a perfectly transmitted mode protected by an effective time reversal symmetry; a transverse magnetic field induces chiral modes at the sides of the wire, with different chiralities residing on different sides protecting them from backscattering; and, finally, Majorana zero modes are obtained at the ends of a wire in a proximity to a superconductor, when combined with a flux along the wire. Some parts of our discussion have a small overlap with the discussion in the review [Bardarson and Moore, Rep. Prog. Phys., 76, 056501, (2013)]. We do not aim to give a complete review of the published literature, instead the focus is mainly on our own and directly related work.
Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal-
Three-dimensional topological insulator (TI) nanowires with quantized surface subband spectra are studied as a main component of Majorana bound states (MBS) devices. However, such wires are known to have large concentration $N sim 10^{19}$ cm$^{-3}$
Among the different platforms to engineer Majorana fermions in one-dimensional topological superconductors, topological insulator nanowires remain a promising option. Threading an odd number of flux quanta through these wires induces an odd number of
A direct signature of electron transport at the metallic surface of a topological insulator is the Aharonov-Bohm oscillation observed in a recent study of Bi_2Se_3 nanowires [Peng et al., Nature Mater. 9, 225 (2010)] where conductance was found to os
When a topological insulator (TI) is made into a nanowire, the interplay between topology and size quantization gives rise to peculiar one-dimensional (1D) states whose energy dispersion can be manipulated by external fields. With proximity-induced s