ترغب بنشر مسار تعليمي؟ اضغط هنا

Remarkably high value of Capacitance in BiFeO3 Nanorod

70   0   0.0 ( 0 )
 نشر من قبل Sujit Bandyopadhyay Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A remarkably high value of specific capacitance of 450 F/g has been observed through electrochemical measurements in the electrode made of multiferroic Bismuth Ferrite (BFO) in the form of nanorods protruding out. These BFO nanorods were developed on porous Anodised Alumina (AAO) templates using wet chemical technique. Diameters of nanorods were in the range of 20-100 nm. The high capacitance is attributed to the nanostructure. The active surface charge has been evaluated electrochemically by cyclic voltammetry (CV) at different scanning rates and charge-discharge studies. The specific capacitances were constant after several cycles of charge-discharge leading to their useful application in devices. The mechanism of accumulation of charge on the electrode surface has been studied.



قيم البحث

اقرأ أيضاً

We report experimental evidence for pressure instabilities in the model multiferroic BiFeO3 and namely reveal two structural phase transitions around 3 GPa and 10 GPa by using diffraction and far-infrared spectroscopy at a synchrotron source. The int ermediate phase from 3 to 9 GPa crystallizes in a monoclinic space group, with octahedra tilts and small cation displacements. When the pressure is further increased the cation displacements (and thus the polar character) of BiFeO3 is suppressed above 10 GPa. The above 10 GPa observed non-polar orthorhombic Pnma structure is in agreement with recent theoretical ab-initio prediction, while the intermediate monoclinic phase was not predicted theoretically.
We report on the lattice evolution of BiFeO3 as function of temperature using far infrared emissivity, reflectivity, and X-ray absorption local structure. A power law fit to the lowest frequency soft phonon in the magnetic ordered phase yields an exp onent {beta}=0.25 as for a tricritical point. At about 200 K below TN~640 K it ceases softening as consequence of BiFeO3 metastability. We identified this temperature as corresponding to a crossover transition to an order-disorder regime. Above ~700 K strong band overlapping, merging, and smearing of modes are consequence of thermal fluctuations and chemical disorder. Vibrational modes show band splits in the ferroelectric phase as emerging from triple degenerated species as from a paraelectric cubic phase above TC~1090 K. Temperature dependent X-ray absorption near edge structure (XANES) at the Fe K-edge shows that lower temperature Fe3+ turns into Fe2+. While this matches the FeO wustite XANES profile, the Bi LIII-edge downshift suggests a high temperature very complex bond configuration at the distorted A perovskite site. Overall, our local structural measurements reveal high temperature defect-induced irreversible lattice changes, below, and above the ferroelectric transition, in an environment lacking of long-range coherence. We did not find an insulator to metal transition prior to melting.
Capacitance measurements from cyclic voltammetry, galvanostatic chronopotentiometry and calculation of capacitance from imaginary part of impedance are widely used in investigations of supercapacitors. The methods assume the supercapacitor is a capac itor, while real objects correspond to different equivalent electric circuits and show various contributions of non-capacitive currents to the current which is used for calculation of capacitance. Specific capacitances which are presented in F g-1 units in publications not always refer to electric capacitance. The inadequateness of the capacitance characterization has already resulted in groundless attribution to supercapacitors of various systems with electrochemical responses of poorly reversible electrochemical reactions. The number of publications that present false capacitances is terrible and still increases. A widespread neglect of energy dissipation in calculations of specific capacitance leads to further confusion in the characterization of supercapacitors.
We report inelastic neutron scattering measurements of the phonon spectra in a pure powder sample of the multiferroic material BiFeO3. A high-temperature range was covered to unravel the changes in the phonon dynamics across the Neel (T_N ~ 650 K) an d Curie (T_C ~ 1100 K) temperatures. Experimental results are accompanied by ab-initio lattice dynamical simulations of phonon density of states to enable microscopic interpretations of the observed data. The calculations reproduce well the observed vibrational features and provide the partial atomic vibrational components. Our results reveal clearly the signature of three different phase transitions both in the diffraction patterns and phonon spectra. The phonon modes are found to be most affected by the transition at the T_C. The spectroscopic evidence for the existence of a different structural modification just below the decomposition limit (T_D ~ 1240 K) is unambiguous indicating strong structural changes that may be related to oxygen vacancies and concomitant Fe3+ to Fe2+ reduction and spin transition.
As a room-temperature multiferroic, BiFeO3 has been intensively investigated for both magnetoelectric devices and non-volatile ferroelectric memory applications. Both magnetoelectric and ferroelectric memory devices have the same control knob: polari zation switching by an applied electric field. Due to the rhombohedral symmetry of BiFeO3, there are four ferroelastic variances and three different polarization switching events: (1) 71{deg} switching from r1- to r3+, (2) 109{deg} switching from r1- to r2+ (or r4+), and (3) 180o switching from r1- to r1+ (the superscript + and - stand for up and down polarization, respectively). Each switching path is coupled to a different reorientation of the BiFeO3 unit cell, and hence different coupling to the magnetic order as well as different magnitudes of switchable polarization. A degradation of the ferroelectric properties of BiFeO3 will result in losing controllability of magnetic order switching in magnetoelectric devices and capacity for information storage in ferroelectric memory devices. Especially, polarization fatigue will directly restrict the reliability of the actual devices. Hence it is important to understand the intrinsic fatigue behavior of each polarization switching path in BiFeO3 thin films. In this communication, we report polarization fatigue in BiFeO3 depending on switching path, and propose a fatigue model which will broaden our understanding of the fatigue phenomenon in low-symmetry materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا