ﻻ يوجد ملخص باللغة العربية
As a room-temperature multiferroic, BiFeO3 has been intensively investigated for both magnetoelectric devices and non-volatile ferroelectric memory applications. Both magnetoelectric and ferroelectric memory devices have the same control knob: polarization switching by an applied electric field. Due to the rhombohedral symmetry of BiFeO3, there are four ferroelastic variances and three different polarization switching events: (1) 71{deg} switching from r1- to r3+, (2) 109{deg} switching from r1- to r2+ (or r4+), and (3) 180o switching from r1- to r1+ (the superscript + and - stand for up and down polarization, respectively). Each switching path is coupled to a different reorientation of the BiFeO3 unit cell, and hence different coupling to the magnetic order as well as different magnitudes of switchable polarization. A degradation of the ferroelectric properties of BiFeO3 will result in losing controllability of magnetic order switching in magnetoelectric devices and capacity for information storage in ferroelectric memory devices. Especially, polarization fatigue will directly restrict the reliability of the actual devices. Hence it is important to understand the intrinsic fatigue behavior of each polarization switching path in BiFeO3 thin films. In this communication, we report polarization fatigue in BiFeO3 depending on switching path, and propose a fatigue model which will broaden our understanding of the fatigue phenomenon in low-symmetry materials.
By using piezoelectric force microscopy and scanning Kelvin probe microscopy, we have investigated the domain evolution and space charge distribution in planar BiFeO3 capacitors with different electrodes. It is observed that charge injection at the f
We have studied the polarization fatigue of La and Mg co-substituted BiFeO3 thin film, where a polarization peak is observed during the fatigue process. The origin of such anomalous behavior is analyzed on the basis of the defect evolution using temp
Fatigue failure in ferroelectrics has been intensively investigated in the past few decades. Most of the mechanisms discussed for ferroelectric fatigue have been built on the hypothesis of variation in charged defects, which however are rarely eviden
Statistical distribution of switching times is a key information necessary to describe the dynamic response of a polycrystalline bulk ferroelectric to an applied electric field. The Inhomogeneous Field Mechanism (IFM) model offers a useful tool which
In the last few years, some ideas of electric manipulations in ferromagnetic heterostructures have been proposed for developing next generation spintronic devices. Among them, the magnetization switching driven by spin-orbit torque (SOT) is being int