ﻻ يوجد ملخص باللغة العربية
We propose an exactly solvable waveguide lattice incorporating inhomogeneous coupling coefficient. This structure provides a classical analogue to the squeezed number and squeezed coherent intensity distribution in quantum optics where the propagation length plays the role of squeezed amplitude. The intensity pattern is obtained in a closed form for an arbitrary distribution of the initial beam profile. We have also investigated the phase transition to the spatial Bloch-like oscillations by adding a linear gradient to the propagation constant of each waveguides ($ alpha $). Our analytical results show that the Bloch-like oscillations appear above a critical value for the linear gradient of propagation constant ($ alpha > alpha_{c} $). The phase transition (in the propagation properties of the waveguide) is a result of competition between discrete and Bragg diffraction. Moreover, the light intensity decay algebraically along each waveguide at the critical point while it falls off exponentially below the critical point ($ alpha < alpha_{c} $).
We investigate Rabi-like oscillations of topological valley Hall edge states by introducing two zigzag domain walls in an inversion-symmetry-breaking honeycomb photonic lattice. Such resonant oscillations are stimulated by weak periodic modulation of
We propose a scheme to realize parity-time (PT) symmetric photonic Lieb lattices of ribbon shape and complex couplings, thereby demonstrating the higher-order exceptional point (EP) and Landau-Zener Bloch (LZB) oscillations in presence of a refractiv
The analysis of an angular distribution of the emission intensity of a two-level atom (dipole) in a photonic crystal reveals an enhancement of the emission rate in some observation directions. Such an enhancement is the result of the bunching of many
On-demand, switchable phase transitions between topologically non-trivial and trivial photonic states are demonstrated. Specifically, it is shown that integration of a 2D array of coupled ring resonators within a thermal heater array enables unparall
We study the nonequilibrium steady-state of interacting photons in cavity arrays as described by the driven-dissipative Bose-Hubbard and spin-$1/2$ XY model. For this purpose, we develop a self-consistent expansion in the inverse coordination number