ﻻ يوجد ملخص باللغة العربية
We propose a scheme to realize parity-time (PT) symmetric photonic Lieb lattices of ribbon shape and complex couplings, thereby demonstrating the higher-order exceptional point (EP) and Landau-Zener Bloch (LZB) oscillations in presence of a refractive index gradient. Quite different from non-Hermitian flatband lattices with on-site gain/loss, which undergo thresholdless PT symmetry breaking, the spectrum for such quasi-one-dimensional Lieb lattices has completely real values when the index gradient is applied perpendicular to the ribbon, and a triply degenerated (third-order) EP with coalesced eigenvalues and eigenvectors emerges only when the amplitude of gain/loss ratio reaches a certain threshold value. When the index gradient is applied parallel to the ribbon, the LZB oscillations exhibit intriguing characteristics including asymmetric energy transition and pseudo-Hermitian propagation as the flatband is excited. Meanwhile, a secondary emission occurs each time when the oscillatory motion passes through the EP, leading to distinct energy distribution in the flatband when a dispersive band is excited. Such novel phenomena may appear in other non-Hermitian flatband systems. Our work may also bring insight and suggest a photonic platform to study the symmetry and topological characterization of higher-order EPs that may find unique applications in for example enhancing sensitivity.
Exceptional points (EPs) are degeneracies in open wave systems with coalescence of at least two energy levels and their corresponding eigenstates. In higher dimensions, more complex EP physics not found in two-state systems is observed. We consider t
Bloch oscillations (BOs) are a fundamental phenomenon by which a wave packet undergoes a periodic motion in a lattice when subjected to an external force. Observed in a wide range of synthetic lattice systems, BOs are intrinsically related to the geo
Alternating current RLC electric circuits form an accessible and highly tunable platform simulating Hermitian as well as non-Hermitian (nH) quantum systems. We propose here a circuit realization of nH Dirac and Weyl Hamiltonians subject to time-rever
Exceptional points (EPs), at which both eigenvalues and eigenvectors coalesce, are ubiquitous and unique features of non-Hermitian systems. Second-order EPs are by far the most studied due to their abundance, requiring only the tuning of two real par
We analyze the transport of light in the bulk and at the edge of photonic Lieb lattices, whose unique feature is the existence of a flat band representing stationary states in the middle of the band structure that can form localized bulk states. We f