ﻻ يوجد ملخص باللغة العربية
Let $G=(V,E)$ and $H$ be two graphs. Packing problem is to find in $G$ the largest number of independent subgraphs each of which is isomorphic to $H$. Let $Usubset{V}$. If the graph $G-U$ has no subgraph isomorphic to $H$, $U$ is a cover of $G$. Covering problem is to find the smallest set $U$. The vertex-disjoint tree packing was not sufficiently discussed in literature but has its applications in data encryption and in communication networks such as multi-cast routing protocol design. In this paper, we give the kind of $(k+1)$-connected graph $G$ into which we can pack independently the subgraphs that are each isomorphic to the $(2^{k+1}-1)$-order perfect binary tree $T_k$. We prove that in $G$ the largest number of vertex-disjoint subgraphs isomorphic to $T_k$ is equal to the smallest number of vertices that cover all subgraphs isomorphic to $T_k$. Then, we propose that $T_k$ does not have the emph{ErdH{o}s-P{o}sa} property. We also prove that the $T_k$ packing problem in an arbitrary graph is NP-hard, and propose the distributed approximation algorithms.
The maximum size of an $r$-uniform hypergraph without a Berge cycle of length at least $k$ has been determined for all $k ge r+3$ by Furedi, Kostochka and Luo and for $k<r$ (and $k=r$, asymptotically) by Kostochka and Luo. In this paper, we settle th
In this paper, we give a type B analogue of the 1/k-Eulerian polynomials. Properties of this kind of polynomials, including combinatorial interpretations, recurrence relations and gamma-positivity are studied. In particular, we show that the 1/k-Eule
A $k$-sum of a set $Asubseteq mathbb{Z}$ is an integer that may be expressed as a sum of $k$ distinct elements of $A$. How large can the ratio of the number of $(k+1)$-sums to the number of $k$-sums be? Writing $kwedge A$ for the set of $k$-sums of $
A defensive $k$-alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at least $k$ more neighbors in $S$ than it has outside of $S$. A defensive $k$-alliance $S$ is called global if it forms a dominating set. In
For a graph G=(V,E), the k-dominating graph of G, denoted by $D_{k}(G)$, has vertices corresponding to the dominating sets of G having cardinality at most k, where two vertices of $D_{k}(G)$ are adjacent if and only if the dominating set correspondin