ﻻ يوجد ملخص باللغة العربية
This paper introduces the concept of random context representations for the transition probabilities of a finite-alphabet stochastic process. Processes with these representations generalize context tree processes (a.k.a. variable length Markov chains), and are proven to coincide with processes whose transition probabilities are almost surely continuous functions of the (infinite) past. This is similar to a classical result by Kalikow about continuous transition probabilities. Existence and uniqueness of a minimal random context representation are proven, and an estimator of the transition probabilities based on this representation is shown to have very good pastwise adaptativity properties. In particular, it achieves minimax performance, up to logarithmic factors, for binary renewal processes with bounded $2+gamma$ moments.
The paper deals with a certain class of random evolutions. We develop a construction that yields an invariant measure for a continuous-time Markov process with random transitions. The approach is based on a particular way of constructing the combined
Finitarily Markovian processes are those processes ${X_n}_{n=-infty}^{infty}$ for which there is a finite $K$ ($K = K({X_n}_{n=-infty}^0$) such that the conditional distribution of $X_1$ given the entire past is equal to the conditional distribution
Consider a spiked random tensor obtained as a mixture of two components: noise in the form of a symmetric Gaussian $p$-tensor for $pgeq 3$ and signal in the form of a symmetric low-rank random tensor. The latter is defined as a linear combination of
Finite sample properties of random covariance-type matrices have been the subject of much research. In this paper we focus on the lower tail of such a matrix, and prove that it is subgaussian under a simple fourth moment assumption on the one-dimensi
We prove several results concerning classifications, based on successive observations $(X_1,..., X_n)$ of an unknown stationary and ergodic process, for membership in a given class of processes, such as the class of all finite order Markov chains.