ﻻ يوجد ملخص باللغة العربية
Finitarily Markovian processes are those processes ${X_n}_{n=-infty}^{infty}$ for which there is a finite $K$ ($K = K({X_n}_{n=-infty}^0$) such that the conditional distribution of $X_1$ given the entire past is equal to the conditional distribution of $X_1$ given only ${X_n}_{n=1-K}^0$. The least such value of $K$ is called the memory length. We give a rather complete analysis of the problems of universally estimating the least such value of $K$, both in the backward sense that we have just described and in the forward sense, where one observes successive values of ${X_n}$ for $n geq 0$ and asks for the least value $K$ such that the conditional distribution of $X_{n+1}$ given ${X_i}_{i=n-K+1}^n$ is the same as the conditional distribution of $X_{n+1}$ given ${X_i}_{i=-infty}^n$. We allow for finite or countably infinite alphabet size.
We prove several results concerning classifications, based on successive observations $(X_1,..., X_n)$ of an unknown stationary and ergodic process, for membership in a given class of processes, such as the class of all finite order Markov chains.
This paper introduces the concept of random context representations for the transition probabilities of a finite-alphabet stochastic process. Processes with these representations generalize context tree processes (a.k.a. variable length Markov chains
Long memory or long range dependency is an important phenomenon that may arise in the analysis of time series or spatial data. Most of the definitions of long memory of a stationary process $X={X_1, X_2,cdots,}$ are based on the second-order properti
In this paper we give explicit examples of power-law correlated stationary Markovian processes y(t) where the stationary pdf shows tails which are gaussian or exponential. These processes are obtained by simply performing a coordinate transformation
The problem of extracting as much information as possible from a sequence of observations of a stationary stochastic process $X_0,X_1,...X_n$ has been considered by many authors from different points of view. It has long been known through the work o