ﻻ يوجد ملخص باللغة العربية
In this paper, we consider two formulations for Linear Matrix Inequalities (LMIs) under Slater type constraint qualification assumption, namely, SDP smooth and non-smooth formulations. We also propose two first-order linearly convergent algorithms for solving these formulations. Moreover, we introduce a bundle-level method which converges linearly uniformly for both smooth and non-smooth problems and does not require any smoothness information. The convergence properties of these algorithms are also discussed. Finally, we consider a special case of LMIs, linear system of inequalities, and show that a linearly convergent algorithm can be obtained under a weaker assumption.
Decentralized optimization is a powerful paradigm that finds applications in engineering and learning design. This work studies decentralized composite optimization problems with non-smooth regularization terms. Most existing gradient-based proximal
Many large-scale optimization problems can be expressed as composite optimization models. Accelerated first-order methods such as the fast iterative shrinkage-thresholding algorithm (FISTA) have proven effective for numerous large composite models. I
In this paper, we propose two new solution schemes to solve the stochastic strongly monotone variational inequality problems: the stochastic extra-point solution scheme and the stochastic extra-momentum solution scheme. The first one is a general sch
In this paper, we aim to provide a comprehensive analysis on the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a certain error bound co
In this paper we consider a class of convex conic programming. In particular, we propose an inexact augmented Lagrangian (I-AL) method for solving this problem, in which the augmented Lagrangian subproblems are solved approximately by a variant of Ne