ﻻ يوجد ملخص باللغة العربية
With its host of outstanding material properties, single-crystal diamond is an attractive material for nanomechanical systems. Here, the mechanical resonance characteristics of freestanding, single-crystal diamond nanobeams fabricated by an angled-etching methodology are reported. Resonance frequencies displayed evidence of significant compressive stress in doubly clamped diamond nanobeams, while cantilever resonance modes followed the expected inverse-length-squared trend. Q-factors on the order of 104 were recorded in high vacuum. Results presented here represent initial groundwork for future diamond-based nanomechanical systems which may be applied in both classical and quantum applications.
We present nanofabrication and mechanical measurements of single-crystal diamond cantilevers with thickness down to 85 nm, thickness uniformity better than 20 nm, and lateral dimensions up to 240 um. Quality factors exceeding one million are found at
The energy dissipation 1/Q (where Q is the quality factor) and resonance frequency characteristics of single-crystal 3C-SiC ultrahigh frequency (UHF) nanomechanical resonators are measured, for a family of UHF resonators with resonance frequencies of
With the best overall electronic and thermal properties, single-crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into us
We have developed capacitively-transduced nanomechanical resonators using sp$^2$-rich diamond-like carbon (DLC) thin films as conducting membranes. The electrically conducting DLC films were grown by physical vapor deposition at a temperature of $500
The negatively-charged nitrogen-vacancy center (NV) in diamond forms a versatile system for quantum sensing applications. Combining the advantageous properties of this atomic-sized defect with scanning probe techniques such as atomic force microscopy