ﻻ يوجد ملخص باللغة العربية
The negatively-charged nitrogen-vacancy center (NV) in diamond forms a versatile system for quantum sensing applications. Combining the advantageous properties of this atomic-sized defect with scanning probe techniques such as atomic force microscopy (AFM) enables nanoscale imaging of e.g. magnetic fields. To form a scanning probe device, we place single NVs shallowly (i.e. < 20 nm) below the top facet of a diamond nanopillar, which is located on a thin diamond platform of typically below 1 mu m thickness. This device can be attached to an AFM head, forming an excellent scanning probe tip. Furthermore, it simultaneously influences the collectible photoluminescence (PL) rate of the NV located inside. Especially sensing protocols using continuous optically-detected magnetic resonance (ODMR) benefit from an enhanced collectible PL rate, improving the achievable sensitivity. This work presents a comprehensive set of simulations to quantify the influence of the device geometry on the collectible PL rate for individual NVs. Besides geometric parameters (e.g. pillar length, diameter and platform thickness), we also focus on fabrication uncertainties such as the exact position of the NV or the taper geometry of the pillar introduced by imperfect etching. As a last step, we use these individual results to optimize our current device geometry, yielding a realistic gain in collectible PL rate by a factor of 13 compared to bulk diamond and 1.8 compared to our unoptimized devices.
The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial
With the best overall electronic and thermal properties, single-crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into us
Solid-state spin systems including nitrogen-vacancy (NV) centers in diamond constitute an increasingly favored quantum sensing platform. However, present NV ensemble devices exhibit sensitivities orders of magnitude away from theoretical limits. The
Individual, luminescent point defects in solids so called color centers are atomic-sized quantum systems enabling sensing and imaging with nanoscale spatial resolution. In this overview, we introduce nanoscale sensing based on individual nitrogen vac
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolut