ترغب بنشر مسار تعليمي؟ اضغط هنا

Backaction of a driven nonlinear resonator on a superconducting qubit

200   0   0.0 ( 0 )
 نشر من قبل Maxime Boissonneault
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the backaction of a driven nonlinear resonator on a multi-level superconducting qubit. Using unitary transformations on the multi-level Jaynes-Cummings Hamiltonian and quantum optics master equation, we derive an analytical model that goes beyond linear response theory. Within the limits of validity of the model, we obtain quantitative agreement with experimental and numerical data, both in the bifurcation and in the parametric amplification regimes of the nonlinear resonator. We show in particular that the measurement-induced dephasing rate of the qubit can be rather small at high drive power. This is in contrast to measurement with a linear resonator where this rate increases with the drive power. Finally, we show that, for typical parameters of circuit quantum electrodynamics, correctly describing measurement-induced dephasing requires a model going beyond linear response theory, such as the one presented here.



قيم البحث

اقرأ أيضاً

We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency and temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical predictions; in particular we experimentally observe the phenomenon of quantum heating.
We report on the experimental observation of period multiplication in parametrically driven tunable superconducting resonators. We modulate the magnetic flux through a superconducting quantum interference device, attached to a quarter-wavelength reso nator, with frequencies $nomega$ close to multiples, $n=2,,3,,4,,5$, of the resonator fundamental mode and observe intense output radiation at $omega$. The output field manifests $n$-fold degeneracy with respect to the phase, the $n$ states are phase shifted by $2pi/n$ with respect to each other. Our demonstration verifies the theoretical prediction by Guo et al. in PRL 111, 205303 (2013), and paves the way for engineering complex macroscopic quantum cat states with microwave photons.
We have observed period-tripling subharmonic oscillations, in a superconducting coplanar waveguide resonator operated in the quantum regime, $k_B T ll hbaromega$. The resonator is terminated by a tunable inductance that provides a Kerr-type nonlinear ity. We detected the output field quadratures at frequencies near the fundamental mode, $omega/2pi sim 5,$GHz, when the resonator was driven by a current at $3omega$ with an amplitude exceeding an instability threshold. The output radiation was red-detuned from the fundamental mode. We observed three stable radiative states with equal amplitudes and phase-shifted by $120^circ$. The downconversion from $3omega$ to $omega$ is strongly enhanced by resonant excitation of the second mode of the resonator, and the cross-Kerr effect. Our experimental results are in quantitative agreement with a model for the driven dynamics of two coupled modes.
In addition to their central role in quantum information processing, qubits have proven to be useful tools in a range of other applications such as enhanced quantum sensing and as spectrometers of quantum noise. Here we show that a superconducting qu bit strongly coupled to a nonlinear resonator can act as a probe of quantum fluctuations of the intra-resonator field. Building on previous work [M. Boissoneault et al. Phys. Rev. A 85, 022305 (2012)], we derive an effective master equation for the qubit which takes into account squeezing of the resonator field. We show how sidebands in the qubit excitation spectrum that are predicted by this model can reveal information about squeezing and quantum heating. The main results of this paper have already been successfully compared to experimental data [F. R. Ong et al. Phys. Rev. Lett. 110, 047001 (2013)] and we present here the details of the derivations.
We propose an experimentally realizable hybrid quantum circuit for achieving a strong coupling between a spin ensemble and a transmission-line resonator via a superconducting flux qubit used as a data bus. The resulting coupling can be used to transf er quantum information between the spin ensemble and the resonator. In particular, in contrast to the direct coupling without a data bus, our approach requires far less spins to achieve a strong coupling between the spin ensemble and the resonator (e.g., three to four orders of magnitude less). This proposed hybrid quantum circuit could enable a long-time quantum memory when storing information in the spin ensemble, and allows the possibility to explore nonlinear effects in the ultrastrong-coupling regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا