ﻻ يوجد ملخص باللغة العربية
We explore here a new mechanism by which the out of equilibrium decay of heavy gravitinos, followed by possible R-parity violating decays in the Minimal Supersymmetric Standard Model (MSSM) can generate the baryon asymmetry of the universe. In this mechanism, gravitino decay produces a CP-asymmetry that is carried by squarks or sleptons. These particles then decay through R-parity violating operators generating a lepton asymmetry. The lepton asymmetry is converted into a baryon asymmetry by weak sphalerons, as in the familiar case of leptogenesis by Majorana neutrino decays. To ensure that the gravitino decays while the sphaleron is still in equilibrium, we obtain a lower bound on the gravitino mass, $m_{3/2} gtrsim 10^{8} GeV$, and therefore our mechanism requires a high scale of SUSY breaking, as well as minimum reheating temperature after inflation of $Tgtrsim 10^{12} GeV$ in order to for the gravitino density to be sufficiently large to generate the baryon asymmetry today. We consider each of the MSSMs relevant R-parity violating operators in turn, and derive constraints on parameters in order to give rise to a baryon asymmetry comparable to that observed today, consistent with low energy phenomenological bounds on SUSY models.
We present a leptogenesis mechanism based on the standard type-I seesaw model that successfully operates at right-handed-neutrino masses as low as a few 100 TeV. This mechanism, which we dub wash-in leptogenesis, does not require any CP violation in
We present an inflationary scenario based on a phenomenologically viable model with direct gauge mediation of low-scale supersymmetry breaking. Inflation can occur in the supersymmetry-breaking hidden sector. Although the reheating temperature from t
In models of low-energy gauge mediation, the observed Higgs mass is in tension with the cosmological limit on the gravitino mass $m_{3/2} lesssim 16$ eV. We present an alternative mediation mechanism of supersymmetry breaking via a $U(1)$ $D$-term wi
No-scale supergravity provides a successful framework for Starobinsky-like inflation models. Two classes of models can be distinguished depending on the identification of the inflaton with the volume modulus, $T$ (C-models), or a matter-like field, $
Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majo