ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift J053041.9-665426, a new Be/X-ray binary pulsar in the Large Magellanic Cloud

235   0   0.0 ( 0 )
 نشر من قبل Georgios Vasilopoulos
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed the newly discovered X-ray source Swift J053041.9-665426 in the X-ray and optical regime to confirm its proposed nature as a high mass X-ray binary. We obtained XMM-Newton and Swift X-ray data, along with optical observations with the ESO Faint Object Spectrograph, to investigate the spectral and temporal characteristics of Swift J053041.9-665426. The XMM-Newton data show coherent X-ray pulsations with a period of 28.77521(10) s (1 sigma). The X-ray spectrum can be modelled by an absorbed power law with photon index within the range 0.76 to 0.87. The addition of a black body component increases the quality of the fit but also leads to strong dependences of the photon index, black-body temperature and absorption column density. We identified the only optical counterpart within the error circle of XMM-Newton at an angular distance of ~0.8 arcsec, which is 2MASS J05304215-6654303. We performed optical spectroscopy from which we classify the companion as a B0-1.5Ve star. The X-ray pulsations and long-term variability, as well as the properties of the optical counterpart, confirm that Swift J053041.9-665426 is a new Be/X-ray binary pulsar in the Large Magellanic Cloud.



قيم البحث

اقرأ أيضاً

The Small Magellanic Cloud (SMC) Be/X-ray binary pulsar SXP6.85 = XTE J0103-728 underwent a large Type II outburst beginning on 2008 August 10. The source was consistently seen for the following 20 weeks (MJD = 54688 - 54830). We present X-ray timing and spectroscopic analysis of the source as part of our ongoing Rossi X-ray Timing Explorer (RXTE) monitoring campaign and INTEGRAL key programme monitoring the SMC and 47 Tuc. A comparison with the Optical Gravitational Lensing Experiment (OGLE) III light curve of the Be counterpart shows the X-ray outbursts from this source coincide with times of optical maximum. We attribute this to the circumstellar disk increasing in size, causing mass accretion onto the neutron star. Ground based IR photometry and H-alpha spectroscopy obtained during the outburst are used as a measure of the size of the circumstellar disk and lend support to this picture. In addition, folded RXTE light curves seem to indicate complex changes in the geometry of the accretion regions on the surface of the neutron star, which may be indicative of an inhomogeneous density distribution in the circumstellar material causing a variable accretion rate onto the neutron star. Finally, the assumed inclination of the system and H-alpha equivalent width measurements are used to make a simplistic estimate of the size of the circumstellar disk.
Gamma-ray binaries consist of a neutron star or a black hole interacting with a normal star to produce gamma-ray emission that dominates the radiative output of the system. Only a handful of such systems have been previously discovered, all within ou r Galaxy. Here we report the discovery with the Fermi Large Area Telescope (LAT) of a luminous gamma-ray binary in the Large Magellanic Cloud from a search for periodic modulation in all sources in the third Fermi LAT catalog. This is the first such system to be found outside the Milky Way. The system has an orbital period of 10.3 days and is associated with a massive O5III star located in the supernova remnant DEM L241, previously identified as the candidate high-mass X-ray binary (HMXB) CXOU J053600.0-673507. X-ray and radio emission are also modulated on the 10.3 day period, but are in anti-phase with the gamma-ray modulation. Optical radial velocity measurements suggest that the system contains a neutron star. The source is significantly more luminous than similar sources in the Milky Way at radio, optical, X-ray and gamma-ray wavelengths. The detection of this extra-galactic system, but no new Galactic systems raises the possibility that the predicted number of gamma-ray binaries in our Galaxy has been overestimated, and that HMXBs may be born containing relatively slowly rotating neutron stars.
141 - M.J. Coe , J. Kirk 2015
This is a catalogue of approximately 70 X-ray emitting binary systems in the Small Magellanic Cloud (SMC) that contain a Be star as the mass donor in the system and a clear X-ray pulse signature from a neutron star. The systems are generally referred to as Be/Xray binaries. It lists all their known binary characteristics (orbital period, eccentricity), the measured spin period of the compact object, plus the characteristics of the Be star (spectral type, size of the circumstellar disk, evidence for NRP behaviour). For the first time data from the Spitzer Observatory are combined with ground-based data to provide a view of these systems out into the far-IR. Many of the observational parameters are presented as statistical distributions and compared to other similar similar populations (eg isolated Be & B stars) in the SMC, and to other Be/X-ray systems in the Milky Way. In addition previous important results are re-investigated using this excellently homogeneous sample. In particular, the evidence for a bi-modality in the spin period distribution is shown to be even stronger than first proposed, and the correlation between orbital period and circumstellar disk size seen in galactic sources is shown to be clearly present in the SMC systems and quantised for the first time.
148 - P. Maggi , F. Haberl , R. Sturm 2013
We report the discovery of LXP169, a new high-mass X-ray binary (XRB) in the LMC. The optical counterpart has been identified and appears to exhibit an eclipsing light curve. We performed follow-up observations to clarify the eclipsing nature of the system. Energy spectra and time series were extracted from two XMM-Newton observations to search for pulsations, characterise the spectrum, and measure spectral and timing changes. Long-term X-ray variability was studied using archival ROSAT data. The XMM positions were used to identify the optical counterpart. We obtained UV to NIR photometry to characterise the companion, along with its 4000 d long I-band light curve. We observed LXP169 with Swift at two predicted eclipse times. We found a spin period of 168.8 s that did not change between two XMM observations. The X-ray spectrum, well characterised by a power law, was harder when the source was brighter. The X-ray flux of LXP169 is found to be variable by a factor of at least 10. The counterpart is highly variable on short and long timescales, and its photometry is that of an early-type star with a NIR excess. This classifies the source as a BeXRB pulsar. We observed a transit in the UV, thereby confirming that the companion star itself is eclipsed. We give an ephemeris for the transit of MJD 56203.877 + N*24.329. We propose and discuss the scenario where the matter captured from the companions equatorial disc creates an extended region of high density around the neutron star (NS), which partially eclipses the companion as the NS transits in front of it. This is most likely the first time the compact object in an XRB is observed to eclipse its companion star. LXP169 would be the first eclipsing BeXRB, and a wealth of important information might be gained from additional observations, such as a measure of the possible Be disc/orbital plane misalignment, or the mass of the NS.
Aims: We present a detailed multi-wavelength study of four new supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). The objects were identified as SNR candidates in X-ray observations performed during the survey of the LMC with XMM-Newton. Methods: Data obained with XMM-Newton are used to investigate the morphological and spectral features of the remnants in X-rays. We measure the plasma conditions, look for supernova (SN) ejecta emission, and constrain some of the SNR properties (e.g. age and ambient density). We supplement the X-ray data with optical, infrared, and radio-continuum archival observations, which allow us to understand the conditions resulting in the current appearance of the remnants. Based on the spatially-resolved star formation history (SFH) of the LMC together with the X-ray spectra, we attempt to type the supernovae that created the remnants. Results: We confirm all four objects as SNRs, to which we assign the names MCSNR J0508-6830, MCSNR J0511-6759, MCSNR J0514-6840, and MCSNR J0517-6759. In the first two remnants, an X-ray bright plasma is surrounded by very faint [S II] emission. The emission from the central plasma is dominated by Fe L-shell lines, and the derived iron abundance is greatly in excess of solar. This establishes their type Ia (i.e. thermonuclear) SN origin. They appear to be more evolv
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا