ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a 168.8 s X-ray pulsar transiting in front of its Be companion star in the Large Magellanic Cloud

155   0   0.0 ( 0 )
 نشر من قبل Pierre Maggi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of LXP169, a new high-mass X-ray binary (XRB) in the LMC. The optical counterpart has been identified and appears to exhibit an eclipsing light curve. We performed follow-up observations to clarify the eclipsing nature of the system. Energy spectra and time series were extracted from two XMM-Newton observations to search for pulsations, characterise the spectrum, and measure spectral and timing changes. Long-term X-ray variability was studied using archival ROSAT data. The XMM positions were used to identify the optical counterpart. We obtained UV to NIR photometry to characterise the companion, along with its 4000 d long I-band light curve. We observed LXP169 with Swift at two predicted eclipse times. We found a spin period of 168.8 s that did not change between two XMM observations. The X-ray spectrum, well characterised by a power law, was harder when the source was brighter. The X-ray flux of LXP169 is found to be variable by a factor of at least 10. The counterpart is highly variable on short and long timescales, and its photometry is that of an early-type star with a NIR excess. This classifies the source as a BeXRB pulsar. We observed a transit in the UV, thereby confirming that the companion star itself is eclipsed. We give an ephemeris for the transit of MJD 56203.877 + N*24.329. We propose and discuss the scenario where the matter captured from the companions equatorial disc creates an extended region of high density around the neutron star (NS), which partially eclipses the companion as the NS transits in front of it. This is most likely the first time the compact object in an XRB is observed to eclipse its companion star. LXP169 would be the first eclipsing BeXRB, and a wealth of important information might be gained from additional observations, such as a measure of the possible Be disc/orbital plane misalignment, or the mass of the NS.



قيم البحث

اقرأ أيضاً

We observed the newly discovered X-ray source Swift J053041.9-665426 in the X-ray and optical regime to confirm its proposed nature as a high mass X-ray binary. We obtained XMM-Newton and Swift X-ray data, along with optical observations with the ESO Faint Object Spectrograph, to investigate the spectral and temporal characteristics of Swift J053041.9-665426. The XMM-Newton data show coherent X-ray pulsations with a period of 28.77521(10) s (1 sigma). The X-ray spectrum can be modelled by an absorbed power law with photon index within the range 0.76 to 0.87. The addition of a black body component increases the quality of the fit but also leads to strong dependences of the photon index, black-body temperature and absorption column density. We identified the only optical counterpart within the error circle of XMM-Newton at an angular distance of ~0.8 arcsec, which is 2MASS J05304215-6654303. We performed optical spectroscopy from which we classify the companion as a B0-1.5Ve star. The X-ray pulsations and long-term variability, as well as the properties of the optical counterpart, confirm that Swift J053041.9-665426 is a new Be/X-ray binary pulsar in the Large Magellanic Cloud.
173 - R. Sturm , F. Haberl , M.J. Coe 2010
One of the goals of the XMM-Newton survey of the Small Magellanic Cloud is the study of the Be/X-ray binary population. During one of our first survey observations a bright new transient - XMMUJ004814.0-732204 - was discovered. We present the analysi s of the EPIC X-ray data together with optical observations, to investigate the spectral and temporal characteristics of XMMUJ004814.0-732204. We found coherent X-ray pulsations in the EPIC data with a period of (11.86642 +/- 0.00017) s. The X-ray spectrum can be modelled by an absorbed power-law with indication for a soft excess. Depending on the modelling of the soft X-ray spectrum, the photon index ranges between 0.53 and 0.66. We identify the optical counterpart as a B = 14.9mag star which was monitored during the MACHO and OGLE-III projects. The optical light curves show regular outbursts by ~0.5 mag in B and R and up to 0.9 mag in I which repeat with a time scale of about 1000 days. The OGLE-III optical colours of the star are consistent with an early B spectral type. An optical spectrum obtained at the 1.9 m telescope of the South African Astronomical Observatory in December 2009 shows H_alpha emission with an equivalent width of 3.5 +/- 0.6 A. The X-ray spectrum and the detection of pulsations suggest that XMMUJ004814.0-732204 is a new high mass X-ray binary pulsar in the SMC. The long term variability and the H_alpha emission line in the spectrum of the optical counterpart identify it as a Be/X-ray binary system.
120 - R. C. Lamb 2002
We report the serendipitous detection of a previously unreported pulsar from the direction of the Small Magellanic Cloud using data from the CHANDRA X-Ray Observatory. Because of the luminosity of about 1.5x10^35 ergs/s, its near lack of variability for more than 20 years, and its soft spectrum we propose that it is an anomalous X-ray pulsar (AXP). Data from the ROSAT PSPC in conjunction with the CHANDRA data give a period, P, of 5.44 s and a spin down time, Pdot/P, of 11 ky. If this is a correct identification it will be the first extragalactic AXP and the fastest yet discovered.
139 - S. Laycock 2002
Rossi X-Ray Timing Explorer observations of the Small Magellanic Cloud have revealed a previously unknown transient X-ray pulsar with a pulse period of 95s. Provisionally designated XTE SMC95, the pulsar was detected in three Proportional Counter Arr ay observations during an outburst spanning 4 weeks in March/April 1999. The pulse profile is double peaked reaching a pulse fraction ~0.8. The source is proposed as a Be/neutron star system on the basis of its pulsations, transient nature and characteristically hard X-ray spectrum. The 2-10 keV X-ray luminosity implied by our observations is > 2x10^37 erg/s which is consistent with that of normal outbursts seen in Galactic systems. This discovery adds to the emerging picture of the SMC as containing an extremely dense population of transient high mass X-ray binaries.
The Small Magellanic Cloud (SMC) Be/X-ray binary pulsar SXP6.85 = XTE J0103-728 underwent a large Type II outburst beginning on 2008 August 10. The source was consistently seen for the following 20 weeks (MJD = 54688 - 54830). We present X-ray timing and spectroscopic analysis of the source as part of our ongoing Rossi X-ray Timing Explorer (RXTE) monitoring campaign and INTEGRAL key programme monitoring the SMC and 47 Tuc. A comparison with the Optical Gravitational Lensing Experiment (OGLE) III light curve of the Be counterpart shows the X-ray outbursts from this source coincide with times of optical maximum. We attribute this to the circumstellar disk increasing in size, causing mass accretion onto the neutron star. Ground based IR photometry and H-alpha spectroscopy obtained during the outburst are used as a measure of the size of the circumstellar disk and lend support to this picture. In addition, folded RXTE light curves seem to indicate complex changes in the geometry of the accretion regions on the surface of the neutron star, which may be indicative of an inhomogeneous density distribution in the circumstellar material causing a variable accretion rate onto the neutron star. Finally, the assumed inclination of the system and H-alpha equivalent width measurements are used to make a simplistic estimate of the size of the circumstellar disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا